The ÃA21X̃B21 transitions of H2S+ above the barrier to linearity have been investigated with the energy resolution high enough to identify individual rotational transition lines for the first time. The rotational cooling of the cation is achieved either by the direct ionization or mass-analyzed threshold ionization (MATI) technique employed in the vacuum-ultraviolet laser excitation of the jet-cooled H2S. Subsequent photoexcitation leads to the H2S+H2+S+ dissociation and the S+ product yield taken as a function of the excitation energy gives the photofragment excitation (PHOFEX) spectra. The combined use of MATI and PHOFEX techniques greatly simplifies the spectrum allowing the accurate identification of the rotationally resolved bands which is otherwise a formidable task due to the intrinsic complexity of the ÃA21X̃B21 transition. Highly excited states of Ã(0,7,0), Ã(0,8,0), and Ã(0,9,0) vibronic levels with different K quantum numbers which are located above the barrier to linearity are thoroughly investigated. The bent-to-quasilinear transition of H2S+ above the barrier to linearity shows the characteristics of the Renner–Teller effect, showing the large A rotational constant and strong intensity borrowing of the highly vibrationally excited ground levels such as X̃(0,23,0) or X̃(0,24,0) in the dipole-allowed excitation. Spectroscopic parameters of term values, rotational, and spin-orbit coupling constants are precisely determined in this work, providing the most quantitative spectroscopic structure of the H2S+ to date. Quantum-state dependent photodissociation dynamics are also discussed from spectral features of PHOFEX.

1.
G.
Duxbury
,
C.
Jungen
, and
J.
Rostas
,
Mol. Phys.
48
,
719
(
1983
).
2.
G.
Duxbury
,
M.
Horani
, and
J.
Rostas
,
Proc. R. Soc. London, Ser. A
331
,
109
(
1972
).
3.
R. N.
Dixon
,
G.
Duxbury
,
M.
Horani
, and
J.
Rostas
,
Mol. Phys.
22
,
977
(
1971
).
4.
C.
Jungen
and
A. J.
Merer
,
Mol. Phys.
40
,
1
(
1980
).
5.
C.
Jungen
,
K. E. J.
Hallin
, and
A. J.
Merer
,
Mol. Phys.
40
,
65
(
1980
).
6.
C.
Jungen
,
K. E. J.
Hallin
, and
A. J.
Merer
,
Mol. Phys.
40
,
25
(
1980
).
7.
R. N.
Dixon
,
Trans. Faraday Soc.
60
,
1363
(
1964
).
8.
T.
Barrow
,
R. N.
Dixon
, and
G.
Duxbury
,
Mol. Phys.
27
,
1217
(
1974
).
9.
C.
Jungen
and
A. J.
Merer
,
Molecular Spectroscopy, Modern Research
, ed.
K. N.
Rao
and
C. W.
Mathews
,
Academic Press
,
New York and London
,
1976
).
10.
A. W.
Potts
and
W. C.
Price
,
Proc. R. Soc. London, Ser. A
326
,
181
(
1972
).
11.
J.
Delwiche
and
P.
Natalis
,
Chem. Phys. Lett.
5
,
564
(
1970
).
12.
S.
Durmaz
,
G. H.
King
, and
R. J.
Suffolk
,
Chem. Phys. Lett.
13
,
304
(
1972
).
13.
D. C.
Frost
,
A.
Katrib
,
C. A.
McDowell
, and
R. A. N.
McLean
,
Int. J. Mass Spectrom. Ion Phys.
7
,
485
(
1971
).
14.
W.
Domcke
,
L. S.
Cederbaum
,
J.
Schirmer
,
W.
von Niessen
, and
J. P.
Maier
,
J. Electron Spectrosc. Relat. Phenom.
14
,
59
(
1978
).
15.
R. T.
Wiedmann
,
M. G.
White
,
K.
Wang
, and
V.
McKoy
,
J. Chem. Phys.
100
,
4738
(
1994
).
16.
H. F.
Prest
,
W. B.
Tzeng
,
J. M.
Brom
, Jr.
, and
C. Y.
Ng
,
Int. J. Mass Spectrom. Ion Phys.
50
,
315
(
1983
).
17.
M. Y.
Adam
,
P.
Morin
,
C.
Cauletti
, and
M. N.
Piancastelli
,
J. Electron Spectrosc. Relat. Phenom.
36
,
377
(
1985
).
18.
C. E.
Brion
,
Y.
Iida
, and
J. P.
Thomson
,
Chem. Phys.
101
,
449
(
1986
).
19.
L.
Karlsson
,
L.
Mattsson
,
R.
Jadrny
,
T.
Bergmark
, and
K.
Siegbahn
,
Phys. Scr.
13
,
229
(
1976
).
20.
P.
Baltzer
,
L.
Karlsson
,
M.
Lundqvist
,
B.
Wannberg
,
D. M. P.
Holland
, and
M. A.
MacDonald
,
Chem. Phys.
195
,
403
(
1995
).
21.
M.
Hochlaf
,
K. M.
Weitzel
, and
C. Y.
Ng
,
J. Chem. Phys.
120
,
6944
(
2004
).
22.
S.
Choi
,
K. -W.
Choi
,
S. K.
Kim
,
S.
Chung
, and
S.
Lee
,
J. Phys. Chem. A
110
,
13183
(
2006
).
23.
K. -W.
Choi
,
S.
Choi
,
S. J.
Baek
, and
S. K.
Kim
,
J. Chem. Phys.
126
,
034308
(
2007
).
24.
M.
Lee
and
M. S.
Kim
,
J. Chem. Phys.
126
,
154317
(
2007
).
25.
Y. J.
Bae
and
M. S.
Kim
,
J. Chem. Phys.
128
,
124324
(
2008
).
26.
R. T.
Wiedmann
and
M. G.
White
,
Proc. SPIE
1638
,
273
(
1992
).
27.
J. H. D.
Eland
,
Int. J. Mass Spectrom. Ion Phys.
31
,
161
(
1979
).
28.
A. D.
Webb
,
N.
Kawanaka
,
R. N.
Dixon
, and
M. N. R.
Ashfold
,
J. Chem. Phys.
127
,
224308
(
2007
).
29.
A. D.
Webb
,
R. N.
Dixon
, and
M. N. R.
Ashfold
,
J. Chem. Phys.
127
,
224307
(
2007
).
30.
D. M.
Hirst
,
J. Chem. Phys.
118
,
9175
(
2003
).
31.
G.
Hirsch
and
P. J.
Bruna
,
Int. J. Mass Spectrom. Ion Phys.
36
,
37
(
1980
).
32.
C. P.
Edwards
,
C. S.
Maclean
, and
P. J.
Sarre
,
Chem. Phys. Lett.
87
,
11
(
1982
).
33.
V. H.
Dibeler
and
H. M.
Rosenstock
,
J. Chem. Phys.
39
,
3106
(
1963
).
34.
G. R.
Möhlmann
and
F. J.
de Heer
,
Chem. Phys. Lett.
36
,
353
(
1975
).
35.
G.
Herzberg
,
Molecular Spectra and Molecular Structure Vol. 3: Electronic Spectra and Electronic Structure of Polyatomic Molecules
(
Van Nostrand Reinhold
,
New York
,
1966
).
36.
R. H.
Judge
and
D. J.
Clouthier
,
Comput. Phys. Commun.
135
,
293
(
2001
).
37.
S.
Lahmar
,
Z.
Ben Lakhdar
,
G.
Chambaud
, and
P.
Rosmus
,
J. Mol. Struct.: THEOCHEM
333
,
29
(
1995
).
You do not currently have access to this content.