Analytic internal-coordinate representations are reported for two accurate ab initio spin-spin coupling surfaces of the ammonia molecule, J1(N15,H) and J2(H,H). Calculations were carried out at the level of the second-order polarization propagator approximation involving coupled-cluster singles and doubles amplitudes (CCSD) and using a large specialized basis set, for a total of 841 different geometries corresponding to 2523 distinct points on the J1(N15,H) and J2(H,H) surfaces. The results were fitted to power series expansions truncated after the fourth-order terms. While the one-bond nitrogen-hydrogen coupling depends more on the internuclear distance, the geminal hydrogen-hydrogen coupling exhibits a pronounced dependence on the bond angle. The spin-spin parameters are first vibrationally averaged, using vibrational wave functions obtained variationally from the TROVE computer program with a CCSD(T) based potential energy surface, for ammonia and its various deuterated isotopologues. The vibrationally averaged quantities are then thermally averaged to give values of the couplings at absolute temperatures of 300 and 600 K. We find that the nuclear-motion corrections are rather small. The computed one-bond couplings and their minute isotope effects are in excellent agreement with the experimental values.

1.
T.
Helgaker
,
M.
Jaszuński
, and
K.
Ruud
,
Chem. Rev. (Washington, D.C.)
99
,
293
(
1999
).
2.
J.
Vaara
,
Phys. Chem. Chem. Phys.
9
,
5399
(
2007
).
3.
L. B.
Krivdin
and
R. H.
Contreras
,
Annu. Rep. NMR Spectrosc.
61
,
133
(
2007
).
4.
J. M.
Schulman
and
D. N.
Kaufman
,
J. Chem. Phys.
57
,
2328
(
1972
).
5.
T.
Helgaker
,
M.
Jaszuński
,
K.
Ruud
, and
A.
Górska
,
Theor. Chem. Acc.
99
,
175
(
1998
).
6.
T.
Enevoldsen
,
J.
Oddershede
, and
S. P. A.
Sauer
,
Theor. Chem. Acc.
100
,
275
(
1998
).
7.
J.
Guilleme
and
J.
San Fabián
,
J. Chem. Phys.
109
,
8168
(
1998
).
8.
P. F.
Provasi
,
G. A.
Aucar
, and
S. P. A.
Sauer
,
J. Chem. Phys.
115
,
1324
(
2001
).
9.
J. E.
Peralta
,
G. E.
Scuseria
,
J. R.
Cheeseman
, and
M. J.
Frisch
,
Chem. Phys. Lett.
375
,
452
(
2003
).
10.
W.
Deng
,
J. R.
Cheeseman
, and
M. J.
Frisch
,
J. Chem. Theory Comput.
2
,
1028
(
2006
).
11.
F.
Jensen
,
J. Chem. Theory Comput.
2
,
1360
(
2006
).
12.
U.
Benedikt
,
A. A.
Auer
, and
F.
Jensen
,
J. Chem. Phys.
129
,
064111
(
2008
).
13.
Y. Y.
Rusakov
,
L. B.
Krivdin
,
S. P. A.
Sauer
,
E. P.
Levanova
, and
G. G.
Levkovskaya
,
Magn. Reson. Chem.
48
,
44
(
2010
).
14.
F.
Jensen
, “
The optimum contraction of basis sets for calculating spin-spin coupling constants
,”
Theor. Chim. Acta
, doi:10.1007/s00214-009-0699-5 (in press).
15.
G. E.
Scuseria
and
R. H.
Contreras
,
Theor. Chim. Acta
59
,
437
(
1981
).
16.
G. E.
Scuseria
,
A. R.
Engelmann
, and
R. H.
Contreras
,
Theor. Chim. Acta
61
,
49
(
1982
).
17.
G. E.
Scuseria
and
R. H.
Contreras
,
Chem. Phys. Lett.
93
,
425
(
1982
).
18.
G. A.
Aucar
and
R. H.
Contreras
,
J. Magn. Reson.
93
,
413
(
1991
).
19.
R. H.
Contreras
,
M. C.
Ruiz de Azúa
,
C. G.
Giribet
,
G. A.
Aucar
, and
R.
Loboyan de Bonczok
,
J. Mol. Struct.: THEOCHEM
284
,
249
(
1993
).
20.
R. M.
Lobayan
and
G. A.
Aucar
,
J. Mol. Struct.: THEOCHEM
452
,
1
(
1998
).
21.
R. M.
Lobayan
and
G. A.
Aucar
,
J. Mol. Struct.: THEOCHEM
452
,
13
(
1998
).
22.
P. F.
Provasi
,
G. A.
Aucar
, and
S. P. A.
Sauer
,
Int. J. Mol. Sci.
4
,
231
(
2003
).
23.
O.
Malkina
,
D. R.
Salahub
, and
V. G.
Malkin
,
J. Chem. Phys.
105
,
8793
(
1996
).
24.
J. E.
Peralta
,
V.
Barone
,
R. H.
Contreras
,
D. G.
Zaccari
, and
J. P.
Snyder
,
J. Am. Chem. Soc.
123
,
9162
(
2001
).
25.
P.
Lantto
,
J.
Vaara
, and
T.
Helgaker
,
J. Chem. Phys.
117
,
5998
(
2002
).
26.
V.
Barone
,
P. F.
Provasi
,
J. E.
Peralta
,
J. P.
Snyder
,
S. P. A.
Sauer
, and
R. H.
Contreras
,
J. Phys. Chem. A
107
,
4748
(
2003
).
27.
28.
J.
Olsen
and
P.
Jørgensen
,
J. Chem. Phys.
82
,
3235
(
1985
).
29.
O.
Vahtras
,
H.
Ågren
,
P.
Jørgensen
,
H. J. A.
Jensen
,
S. B.
Padkjær
, and
T.
Helgaker
,
J. Chem. Phys.
96
,
6120
(
1992
).
30.
S. A.
Perera
,
H.
Sekino
, and
R. J.
Bartlett
,
J. Chem. Phys.
101
,
2186
(
1994
).
31.
H.
Sekino
and
R. J.
Bartlett
,
Chem. Phys. Lett.
225
,
486
(
1994
).
32.
S. A.
Perera
,
M.
Nooijen
, and
R. J.
Bartlett
,
J. Chem. Phys.
104
,
3290
(
1996
).
33.
A. A.
Auer
and
J.
Gauss
,
J. Chem. Phys.
115
,
1619
(
2001
).
34.
J. E.
Del Bene
,
I.
Alkorta
, and
J.
Elguero
,
J. Chem. Theory Comput.
4
,
967
(
2008
).
35.
A. A.
Auer
and
J.
Gauss
,
Chem. Phys.
356
,
7
(
2009
).
36.
J.
Oddershede
,
J.
Geertsen
, and
G. E.
Scuseria
,
J. Phys. Chem.
92
,
3056
(
1988
).
37.
J.
Geertsen
,
J.
Oddershede
,
W. T.
Raynes
, and
G. E.
Scuseria
,
J. Magn. Reson.
93
,
458
(
1991
).
38.
W. T.
Raynes
,
J.
Geertsen
, and
J.
Oddershede
,
Chem. Phys. Lett.
197
,
516
(
1992
).
39.
J.
Geertsen
,
J.
Oddershede
, and
W. T.
Raynes
,
Magn. Reson. Chem.
31
,
722
(
1993
).
40.
W. T.
Raynes
,
J.
Geertsen
, and
J.
Oddershede
,
Int. J. Quantum Chem.
52
,
153
(
1994
).
41.
J.
Geertsen
,
J.
Oddershede
,
W. T.
Raynes
, and
T. L.
Marvin
,
Mol. Phys.
82
,
29
(
1994
).
42.
R. D.
Wigglesworth
,
W. T.
Raynes
,
S. P. A.
Sauer
, and
J.
Oddershede
,
Mol. Phys.
92
,
77
(
1997
).
43.
R. D.
Wigglesworth
,
W. T.
Raynes
,
S. P. A.
Sauer
, and
J.
Oddershede
,
Mol. Phys.
94
,
851
(
1998
).
44.
S. P. A.
Sauer
,
C. K.
Møller
,
H.
Koch
,
I.
Paidarová
, and
V.
Špirko
,
Chem. Phys.
238
,
385
(
1998
).
45.
R. D.
Wigglesworth
,
W. T.
Raynes
,
S.
Kirpekar
,
J.
Oddershede
, and
S. P. A.
Sauer
,
J. Chem. Phys.
112
,
3735
(
2000
).
46.
S. P. A.
Sauer
and
W. T.
Raynes
,
J. Chem. Phys.
113
,
3121
(
2000
).
47.
R. D.
Wigglesworth
,
W. T.
Raynes
,
S.
Kirpekar
,
J.
Oddershede
, and
S. P. A.
Sauer
,
J. Chem. Phys.
114
,
9192
(
2001
).
48.
S. P. A.
Sauer
and
W. T.
Raynes
,
J. Chem. Phys.
114
,
9193
(
2001
).
49.
S. P. A.
Sauer
,
W. T.
Raynes
, and
R. A.
Nicholls
,
J. Chem. Phys.
115
,
5994
(
2001
).
50.
S.
Kirpekar
,
T.
Enevoldsen
,
J.
Oddershede
, and
W. T.
Raynes
,
Mol. Phys.
91
,
897
(
1997
).
51.
P. -O.
Åstrand
,
K.
Ruud
,
K. V.
Mikkelsen
, and
T.
Helgaker
,
J. Chem. Phys.
110
,
9463
(
1999
).
52.
J.
Casanueva
,
J.
San Fabián
,
E.
Díez
, and
A. L.
Esteban
,
J. Mol. Struct.
565–566
,
449
(
2001
).
53.
T. A.
Ruden
,
O. B.
Lutnæs
, and
T.
Helgaker
,
J. Chem. Phys.
118
,
9572
(
2003
).
54.
T. A.
Ruden
,
T.
Helgaker
, and
M.
Jaszuński
,
Chem. Phys.
296
,
53
(
2004
).
55.
M. B.
Hansen
,
J.
Kongsted
,
D.
Toffoli
, and
O.
Christiansen
,
J. Phys. Chem. A
112
,
8436
(
2008
).
56.
S. P. A.
Sauer
and
P. F.
Provasi
,
ChemPhysChem
9
,
1259
(
2008
).
57.
P. F.
Provasi
and
S. P. A.
Sauer
,
Phys. Chem. Chem. Phys.
11
,
3987
(
2009
).
58.
V.
Špirko
,
J. Mol. Spectrosc.
101
,
30
(
1983
).
59.
V.
Špirko
and
W. P.
Kraemer
,
J. Mol. Spectrosc.
133
,
331
(
1989
).
60.
W.
Hüttner
,
U. E.
Frank
,
W.
Majer
,
K.
Mayer
, and
V.
Špirko
,
Mol. Phys.
64
,
1233
(
1988
).
61.
V.
Špirko
,
H. J. A.
Jensen
, and
P.
Jørgensen
,
Chem. Phys.
144
,
343
(
1990
).
62.
S. P. A.
Sauer
,
V.
Špirko
, and
J.
Oddershede
,
Chem. Phys.
153
,
189
(
1991
).
63.
C. J.
Jameson
,
A. C.
de Dios
, and
A. K.
Jameson
,
J. Chem. Phys.
95
,
1069
(
1991
).
64.
J.
Oddershede
,
I.
Paidarová
, and
V.
Špirko
,
J. Mol. Spectrosc.
152
,
342
(
1992
).
65.
I.
Paidarová
,
V.
Špirko
, and
J.
Oddershede
,
J. Mol. Spectrosc.
160
,
311
(
1993
).
66.
J.
Kowalewski
and
B.
Roos
,
Chem. Phys.
11
,
123
(
1975
).
67.
P.
Solomon
and
J. M.
Schulman
,
J. Am. Chem. Soc.
99
,
7776
(
1977
).
68.
S. N.
Yurchenko
,
W.
Thiel
, and
P.
Jensen
,
J. Mol. Spectrosc.
245
,
126
(
2007
).
69.
S. N.
Yurchenko
,
J.
Zheng
,
H.
Lin
,
P.
Jensen
, and
W.
Thiel
,
J. Chem. Phys.
123
,
134308
(
2005
).
70.
C.
Moler
and
C.
Van Loan
,
SIAM Rev.
45
,
3
(
2003
).
71.
R. M.
Gester
,
H. C.
Georg
,
S.
Canuto
,
M. C.
Caputo
, and
P. F.
Provasi
,
J. Phys. Chem. A
113
,
14936
(
2010
).
72.
A.
Møgelhøj
,
K.
Aidas
,
K. V.
Mikkelsen
,
S. P. A.
Sauer
, and
J.
Kongsted
,
J. Chem. Phys.
130
,
134508
(
2009
).
73.
S. P. A.
Sauer
and
M. J.
Packer
, in
Computational Molecular Spectroscopy
, edited by
P. R.
Bunker
and
P.
Jensen
(
Wiley
,
London
,
2000
), Chap. 7, pp.
221
252
.
74.
75.
J.
Linderberg
and
Y.
Öhrn
,
Propagators in Quantum Chemistry
(
Academic
,
London
,
1973
).
76.
E. S.
Nielsen
,
P.
Jørgensen
, and
J.
Oddershede
,
J. Chem. Phys.
73
,
6238
(
1980
).
77.
J.
Geertsen
and
J.
Oddershede
,
Chem. Phys.
90
,
301
(
1984
).
78.
M. J.
Packer
,
E. K.
Dalskov
,
T.
Enevoldsen
,
H. J. A.
Jensen
, and
J.
Oddershede
,
J. Chem. Phys.
105
,
5886
(
1996
).
79.
K. L.
Bak
,
H.
Koch
,
J.
Oddershede
,
O.
Christiansen
, and
S. P. A.
Sauer
,
J. Chem. Phys.
112
,
4173
(
2000
).
80.
B. O.
Roos
, in
Ab Initio Methods in Quantum Chemistry—II. Advances in Chemical Physics
, edited by
K. P.
Lawley
(
Wiley
,
Chichester
,
1987
), pp.
399
445
.
81.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. A.
Jensen
,
J. Chem. Phys.
89
,
2185
(
1988
).
82.
H. J. A.
Jensen
,
P.
Jørgensen
,
H.
Ågren
, and
J.
Olsen
,
J. Chem. Phys.
88
,
3834
(
1988
).
83.
H. J. A.
Jensen
,
P.
Jørgensen
,
H.
Ågren
, and
J.
Olsen
,
J. Chem. Phys.
89
,
5354
(
1988
).
84.
S. P. A.
Sauer
,
J. Chem. Phys.
98
,
9220
(
1993
).
85.
M. J.
Packer
,
E. K.
Dalskov
,
S. P. A.
Sauer
, and
J.
Oddershede
,
Theor. Chim. Acta
89
,
323
(
1994
).
86.
DALTON, a molecular electronic structure program, Release 2.0, http://www.kjemi.uio.no/software/dalton/dalton.html,
2005
.
87.
H.
Koch
,
O.
Christiansen
,
R.
Kobayashi
,
P.
Jørgensen
, and
T.
Helgaker
,
Chem. Phys. Lett.
228
,
233
(
1994
).
88.
H.
Koch
,
A. S.
de Merás
,
T.
Helgaker
, and
O.
Christiansen
,
J. Chem. Phys.
104
,
4157
(
1996
).
89.
F. B.
van Duijneveldt
, IBM Technical Report No. RJ945,
1971
.
90.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
91.
V.
Galasso
,
J. Mol. Struct.: THEOCHEM
93
,
201
(
1983
).
92.
G.
Fronzoni
and
V.
Galasso
,
J. Mol. Struct.: THEOCHEM
122
,
327
(
1985
).
93.
H.
Fukui
,
K.
Miura
,
H.
Matsuda
, and
T.
Baba
,
J. Chem. Phys.
97
,
2299
(
1992
).
94.
T.
Helgaker
,
M.
Watson
, and
N. C.
Handy
,
J. Chem. Phys.
113
,
9402
(
2000
).
95.
P.
Lantto
and
J.
Vaara
,
J. Chem. Phys.
114
,
5482
(
2001
).
96.
M.
Pecul
and
J.
Sadlej
,
Chem. Phys. Lett.
360
,
272
(
2002
).
97.
T.
Janowski
and
M.
Jaszunski
,
Int. J. Quantum Chem.
90
,
1083
(
2002
).
98.
W. S.
Benedict
and
E. K.
Plyler
,
Can. J. Phys.
35
,
1234
(
1957
).
99.
See supplementary material at http://dx.doi.org/10.1063/1.3359850 for a FORTRAN routine to evaluate the J¯1N1 and J¯223 values at arbitrary geometries.
100.
S. P. A.
Sauer
,
V.
Špirko
,
I.
Paidarová
, and
J.
Oddershede
,
Chem. Phys.
184
,
1
(
1994
).
101.
S. N.
Yurchenko
,
R. J.
Barber
,
A.
Yachmenev
,
W.
Thiel
,
P.
Jensen
, and
J.
Tennyson
,
J. Phys. Chem. A
113
,
11845
(
2009
).
102.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
, 2nd ed. (
NRC Research
,
Ottawa
,
1998
).
103.
P.
Jensen
and
P. R.
Bunker
,
Mol. Phys.
97
,
821
(
1999
).
104.
R. D.
Wigglesworth
,
W. T.
Raynes
,
J.
Oddershede
, and
S. P. A.
Sauer
,
Mol. Phys.
96
,
1595
(
1999
).
105.
R. D.
Wigglesworth
,
W. T.
Raynes
,
S.
Kirpekar
,
J.
Oddershede
, and
S. P. A.
Sauer
,
J. Chem. Phys.
112
,
736
(
2000
).
106.
R. A.
Bernheim
and
H.
Batiz-Hernandez
,
J. Chem. Phys.
40
,
3446
(
1964
).
107.
W. M.
Litchman
,
M.
Alei
, Jr.
, and
A. E.
Florin
,
J. Chem. Phys.
50
,
1897
(
1969
).
108.
M.
Alei
,
A. E.
Florin
,
W. M.
Litchman
, and
J. F.
O’Brien
,
J. Phys. Chem.
75
,
932
(
1971
).
109.
R. E.
Wasylishen
and
J. O.
Friedrich
,
Can. J. Chem.
65
,
2238
(
1987
).

Supplementary Material

You do not currently have access to this content.