An algorithm for constructing a quasidiabatic, coupled electronic state Hamiltonian, in a localized region of nuclear coordinate space, suitable for determining bound state spectra, is generalized to determine a nonlocal Hamiltonian capable of describing, for example, multichannel nonadiabatic photodissociation. For Nstate coupled electronic states, the Hamiltonian, Hd, is a symmetric Nstate×Nstate matrix whose elements are polynomials involving: decaying exponentials exp(ari,jn)n=1,2, where ri,j=RiRj, ri,j=|ri,j|, Rj locates the jth nucleus; and scaled dot-cross product coordinates, proportional to ri,j×ri,kri,l. The constructed Hamiltonian is constrained to reproduce, exactly, the ab initio data, energies, gradients, and derivative coupling at selected points, or nodes, in nuclear coordinate space. The remainder of the ab initio data is approximated in a least-squares sense using a normal equations approach. The fitting procedure includes a damping term that precludes oscillations due to the nodal constraints or local excesses of parameters. To illustrate the potential of the fitting procedure an Hd is constructed, with the full nuclear permutation-inversion symmetry, which describes portions of the 1,2A1 potential energy surfaces of NH3, including the minimum energy point on the 1,2A1 seam of conical intersection and the NH2+H asymptote. Ab initio data at 239 nuclear configurations was used in the construction which was tested at 48 additional nuclear configurations. While the energy range on the ground and excited potential energy surface is each individually 45000cm1, the root mean square error for the energies at all points is only 93.6cm1. The location and local conical topography of the minimum energy conical intersection is exactly reproduced. The derivative couplings are shown to be well reproduced, justifying the attribute quasidiabatic.

1.
G. J.
Atchity
and
K.
Ruedenberg
,
Theor. Chem. Acc.
97
,
47
(
1997
).
2.
H.
Nakamura
and
D. G.
Truhlar
,
J. Chem. Phys.
117
,
5576
(
2002
).
3.
H.
Nakamura
and
D. G.
Truhlar
,
J. Chem. Phys.
118
,
6816
(
2003
).
4.
H.
Köppel
,
Adv. Ser. Phys. Chem.
15
,
175
(
2004
).
5.
L. S.
Cederbaum
,
Adv. Ser. Phys. Chem.
15
,
3
(
2004
).
6.
A. W.
Jasper
,
B. K.
Kendrick
,
C. A.
Mead
, and
D. G.
Truhlar
, in
Modern Trends in Chemical Reaction Dynamics. Experiment and Theory (Part I)
, edited by
X.
Yang
and
K.
Liu
(
World Scientific
,
New Jersey
,
2004
), Vol.
14
, p.
329
.
7.
C. R.
Evenhuis
,
X.
Lin
,
D. H.
Zhang
,
D. R.
Yarkony
, and
M. A.
Collins
,
J. Chem. Phys.
123
,
134110
(
2005
).
8.
O.
Godsi
,
C. R.
Evenhuis
, and
M. A.
Collins
,
J. Chem. Phys.
125
,
104105
(
2006
).
9.
S.
Nangia
and
D. G.
Truhlar
,
J. Chem. Phys.
124
,
124309
(
2006
).
10.
A.
Viel
,
W.
Eisfeld
,
C. R.
Evenhuis
, and
U.
Manthe
,
Chem. Phys.
347
,
331
(
2008
).
11.
C. R.
Evenhuis
and
M. A.
Collins
,
J. Chem. Phys.
121
,
2515
(
2004
).
12.
P.
Zhang
,
K.
Morokuma
, and
A. M.
Wodtke
,
J. Chem. Phys.
122
,
014106
(
2005
).
13.
H.
Lischka
,
M.
Dallos
,
P.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
,
J. Chem. Phys.
120
,
7322
(
2004
).
15.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
77
,
6090
(
1982
).
17.
B. N.
Papas
,
M. S.
Schuurman
, and
D. R.
Yarkony
,
J. Chem. Phys.
129
,
124104
(
2008
).
18.
X.
Zhu
and
D. R.
Yarkony
,
J. Chem. Phys.
130
,
234108
(
2009
).
19.
G.
Fogarasi
,
X.
Zhou
,
P. W.
Taylor
, and
P.
Pulay
,
J. Am. Chem. Soc.
114
,
8191
(
1992
).
20.
B. J.
Braams
and
J. M.
Bowman
,
Int. Rev. Phys. Chem.
28
,
577
(
2009
).
21.
X.
Huang
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Chem. Phys.
122
,
044308
(
2005
).
22.
L.
Koziol
,
Y. M.
Wang
,
B. J.
Braams
,
J. M.
Bowman
, and
A. I.
Krylov
,
J. Chem. Phys.
128
,
204310
(
2008
).
23.
H. C.
Longuet-Higgins
,
Mol. Phys.
6
,
445
(
1963
).
24.
P. R.
Bunker
,
Molecular Symmetry and Spectroscopy
(
Academic
,
New York
,
1979
).
25.
A.
Bach
,
J. M.
Hutchison
,
R. J.
Holiday
, and
F. F.
Crim
,
J. Chem. Phys.
116
,
4955
(
2002
).
26.
A.
Bach
,
J. M.
Hutchison
,
R. J.
Holiday
, and
F. F.
Crim
,
J. Chem. Phys.
118
,
7144
(
2003
).
27.
M. L.
Hause
,
Y. H.
Yoon
, and
F. F.
Crim
,
J. Chem. Phys.
125
,
174309
(
2006
).
28.
D. R.
Yarkony
,
J. Chem. Phys.
121
,
628
(
2004
).
29.
D.
Bonhommeau
and
D. G.
Truhlar
,
J. Chem. Phys.
129
,
014302
(
2008
).
30.
D.
Bonhommeau
,
R.
Valero
,
D. G.
Truhlar
, and
A. W.
Jasper
,
J. Chem. Phys.
130
,
234303
(
2009
).
31.
S. J.
Leon
,
Linear Algebra with Applications
(
Prentice-Hall
,
Upper Saddle River
,
2002
).
32.
B. H.
Lengsfield
and
D. R.
Yarkony
, in
State-Selected and State to State Ion-Molecule Reaction Dynamics: Part 2 Theory
, edited by
M.
Baer
and
C. -Y.
Ng
(
Wiley
,
New York
,
1992
), Vol.
82
, p.
1
.
33.
D. R.
Yarkony
,
Acc. Chem. Res.
31
,
511
(
1998
).
34.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
127
,
094104
(
2007
).
35.
H.
Lischka
,
R.
Shepard
,
R. M.
Pitzer
,
I.
Shavitt
,
M.
Dallos
,
T.
Müller
,
P. G.
Szalay
,
M.
Seth
,
G. S.
Kedziora
,
S.
Yabushita
, and
Z.
Zhang
,
Phys. Chem. Chem. Phys.
3
,
664
(
2001
).
36.
D. R.
Yarkony
,
J. Chem. Phys.
112
,
2111
(
2000
).
37.
See supplementary material at http://dx.doi.org/10.1063/1.3324982 for supplementary tables.
38.
G. J.
Atchity
,
S. S.
Xantheas
, and
K.
Ruedenberg
,
J. Chem. Phys.
95
,
1862
(
1991
).
39.
M.
Ben-Nun
and
T. J.
Martinez
,
J. Phys. Chem. A
104
,
5161
(
2000
).
40.
G. A.
Worth
,
M. A.
Robb
, and
B.
Lasorne
,
Mol. Phys.
106
,
2077
(
2008
).
41.
K. C.
Thompson
,
M. J. T.
Jordan
, and
M. A.
Collins
,
J. Chem. Phys.
108
,
564
(
1998
).
42.
M. I.
McCarthy
,
P.
Rosmus
,
H. -J.
Werner
,
P.
Botschwina
, and
V.
Vaida
,
J. Chem. Phys.
86
,
6693
(
1987
).

Supplementary Material

You do not currently have access to this content.