We have used a high-temperature flowing-afterglow Langmuir-probe apparatus to measure rate constants for electron attachment to halomethanes which attach electrons very inefficiently at room temperature, yielding Cl ion product. We studied CH2Cl2 (495–973 K), CF2Cl2 (291–1105 K), and CF3Cl (524–1004 K) and include our recent measurement for CH3Cl (700–1100 K) in the discussion of the electron attachment results. The measured attachment rate constants show Arrhenius behavior in the temperature ranges examined, from which estimates of rate constants at 300 K may be made: CH2Cl2(1.8×1013cm3s1), CH3Cl(1.1×1017cm3s1), and CF3Cl(4.2×1014cm3s1), all of which are difficult to measure directly. In the case of CF2Cl2, the room temperature rate constant was sufficiently large to be measured (1.6×109cm3s1). The Arrhenius plots yield activation energies for the attachment reactions: 390±50meV(CH2Cl2), 124±20meV(CF2Cl2), 670±70meV(CH3Cl), and 406±50meV(CF3Cl). Comparisons are made with existing data where available. G3 calculations were carried out to obtain reaction energetics. They show that the parent anions of CH2Cl2CF2Cl2, CH3Cl, and CF3Cl are stable, though CH3Cl exists only as an electrostatically bound complex.

1.
T. M.
Miller
,
J. F.
Friedman
,
J. S.
Williamson
,
L. C.
Schaffer
, and
A. A.
Viggiano
,
Rev. Sci. Instrum.
80
,
034104
(
2009
).
2.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
7754
(
1998
).
3.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN-03W, Revision C.02, Gaussian, Inc., Wallingford, CT,
2004
.
4.
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
,
J. Chem. Phys.
123
,
124107
(
2005
).
5.
A.
Kühn
and
E.
Illenberger
,
J. Phys. Chem.
93
,
7060
(
1989
).
6.
J.
Langer
,
S.
Mott
,
M.
Meinke
,
P.
Tegeder
,
A.
Stamatovic
, and
E.
Illenberger
,
J. Chem. Phys.
113
,
11063
(
2000
).
7.
G. B.
Ellison
,
P. C.
Engelking
, and
W. C.
Lineberger
,
J. Am. Chem. Soc.
100
,
2556
(
1978
).
8.
H. -J.
Deyerl
,
L. S.
Alconcel
, and
R. E.
Continetti
,
J. Phys. Chem. A
105
,
552
(
2001
).
9.
C.
Blondel
,
C.
Delsart
, and
F.
Goldfarb
,
J. Phys. B
34
,
L281
(
2001
).
10.
J. F.
Friedman
,
T. M.
Miller
,
L. C.
Schaffer
,
A. A.
Viggiano
, and
I. I.
Fabrikant
,
Phys. Rev. A
79
,
032707
(
2009
).
11.
D.
Smith
,
N. G.
Adams
, and
E.
Alge
,
J. Phys. B
17
,
461
(
1984
).
12.
T.
Su
and
W. J.
Chesnavich
,
J. Chem. Phys.
76
,
5183
(
1982
);
T.
Su
,
J. Chem. Phys.
88
,
4102
(
1988
). We used the parametrized formula given in the final citation, except that the dimensionless temperature TR is misprinted: TR=2αkBT/μD2.
13.
M.
Larsson
and
A. E.
Orel
,
Dissociative Recombination of Molecular Ions
(
Cambridge University Press
,
Cambridge
,
2008
), pp.
267
271
. The correction of the present data for electron-ion recombination events used a rough average of rate constants for polyatomic ions.
14.
L. A.
Pinnaduwage
,
C.
Tav
,
D. L.
McCorkle
, and
W. X.
Ding
,
J. Chem. Phys.
110
,
9011
(
1999
). These CH2Cl2 data (300, 400, and 500 K) did not extend quite to thermal electron energies. However, we found that the low-energy rate constant data at 400 and 500 K could be fitted quite precisely to a power law in mean electron energy and then extrapolated to thermal energy with confidence. The 300 K rate constants could be similarly well fit provided that the three lowest-energy data were ignored. Our fits, with ε as the mean thermal electron energy in eV, are 3.916×1010×ε2.2549cm3s1 (300 K), 9.245×1010×ε1.6461cm3s1 (400 K), and 1.3175×109×ε0.95811cm3s1 (500 K).
15.
D. L.
McCorkle
,
A. A.
Christodoulides
,
L. G.
Christophorou
, and
I.
Szamrej
,
J. Chem. Phys.
72
,
4049
(
1980
);
D. L.
McCorkle
,
A. A.
Christodoulides
,
L. G.
Christophorou
, and
I.
Szamrej
,
J. Chem. Phys.
76
,
753
(
1982
).
16.
S. J.
Burns
,
J. M.
Matthews
, and
D. L.
McFadden
,
J. Phys. Chem.
100
,
19436
(
1996
).
17.
J. L.
Le Garrec
,
O.
Sidko
,
J. L.
Queffelec
,
S.
Hamon
,
J. B. A.
Mitchell
, and
B. R.
Rowe
,
J. Chem. Phys.
107
,
54
(
1997
).
18.
J. D.
Skalny
,
S.
Matejcik
,
T.
Mikoviny
, and
T. D.
Märk
,
Int. J. Mass Spectrom.
223-224
,
217
(
2003
).
19.
L. G.
Christophorou
and
J. K.
Olthoff
,
Fundamental Electron Interactions with Plasma Processing Gases
(
Kluwer Academic
,
New York
/
Plenum
,
New York
,
2004
), pp.
553
554
.
20.
L. G.
Christophorou
,
D. L.
McCorkle
, and
A. A.
Christodoulides
, in
Electron-Molecule Interactions and Their Applications
, edited by
L. G.
Christophorou
(
Academic
,
New York
,
1984
), Vol.
1
, Chap. 6.
21.
A preliminary description of the Boston College experiments, in an apparatus capable of reaching 1200 K, was given by
D. L.
McFadden
, “
Chemical kinetics and atmospheric modification
,” Final Report No. PL-TR-94-2164,
1994
, available online from the Defense Technical Information Center at http://handle.dtic.mil/100.2/ADA283304.
22.
I. I.
Fabrikant
,
J. Phys. B
27
,
4325
(
1994
).
23.
R. S.
Wilde
,
G. A.
Gallup
, and
I. I.
Fabrikant
,
J. Phys. B
33
,
5479
(
2000
).
24.
A. A.
Christodoulides
,
R.
Schumacher
, and
R. N.
Schindler
,
Int. J. Chem. Kinet.
10
,
1215
(
1978
).
25.
R. W.
Fessenden
and
K. M.
Bansal
,
J. Chem. Phys.
53
,
3468
(
1970
).
26.
Y.
Wang
,
L. G.
Christophorou
,
J. K.
Olthoff
, and
J. K.
Verbrugge
,
Chem. Phys. Lett.
304
,
303
(
1999
).
27.
G. K.
Jarvis
,
C. A.
Mayhew
,
L.
Singleton
, and
S. M.
Spyrou
,
Int. J. Mass Spectrom. Ion Process.
164
,
207
(
1997
).
28.
Y. -R.
Luo
, in
Handbook of Chemistry and Physics
, 88th ed., edited by
D. R.
Lide
(
CRC
,
Boca Raton, FL
,
2008
), pp.
56
80
.
29.
The Arrhenius fits in Fig. 2 are as follows: CH2Cl2, 6.4226×107cm3s1exp[390.1/kT(meV)], and the fit to our deduced ka from ORNL data is 5.2896×107cm3s1exp[378.2/kT(meV)]; CH3Cl, 1.6816×106cm3s1exp[665.9/kT(meV)]; CF3Cl, 2.8224×107cm3s1exp[406.4/kT(meV)]; and CF2Cl2, 2.2006×107cm3s1exp[125.9/kT(meV)].
30.
I. I.
Fabrikant
and
H.
Hotop
,
J. Chem. Phys.
128
,
124308
(
2008
).
31.
I.
Hahndorf
and
E.
Illenberger
,
Int. J. Mass Spectrom.
167/168
,
87
(
1997
).
32.
E. I.
Dashevskaya
,
I.
Litvin
,
E. E.
Nikitin
, and
J.
Troe
,
Phys. Chem. Chem. Phys.
10
,
1270
(
2008
).
33.
T. M.
Miller
, in
Handbook of Chemistry and Physics
, 88th ed., edited by
D. R.
Lide
(
CRC
,
Boca Raton, FL
,
2008
), Sec. 10, pp.
193
202
. The polarizabilities are 7.2Å3(CH2Cl2), 7.93Å3(CF2Cl2), 5.35Å3(CH3Cl), and 5.72Å3(CF3Cl).
34.
Handbook of Chemistry and Physics
, 88th ed., edited by
D. R.
Lide
(
CRC
,
Boca Raton, FL
,
2008
), Sec. 9, pp.
47
55
. The dipole moments are 1.60±0.03D(CH2Cl2), 0.51±0.05D(CF2Cl2), 1.8963±0.0002D(CH3Cl), and 0.50±0.01D(CF3Cl).
You do not currently have access to this content.