We have developed a new quantum Monte Carlo method for the simulation of correlated many-electron systems in full configuration-interaction (Slater determinant) spaces. The new method is a population dynamics of a set of walkers, and is designed to simulate the underlying imaginary-time Schrödinger equation of the interacting Hamiltonian. The walkers (which carry a positive or negative sign) inhabit Slater determinant space, and evolve according to a simple set of rules which include spawning, death and annihilation processes. We show that this method is capable of converging onto the full configuration-interaction (FCI) energy and wave function of the problem, without any a priori information regarding the nodal structure of the wave function being provided. Walker annihilation is shown to play a key role. The pattern of walker growth exhibits a characteristic plateau once a critical (system-dependent) number of walkers has been reached. At this point, the correlation energy can be measured using two independent methods—a projection formula and a energy shift; agreement between these provides a strong measure of confidence in the accuracy of the computed correlation energies. We have verified the method by performing calculations on systems for which FCI calculations already exist. In addition, we report on a number of new systems, including CO, O2, CH4, and NaH—with FCI spaces ranging from 109 to 1014, whose FCI energies we compute using modest computational resources.

1.
N.
Metropolis
and
S.
Ulam
,
J. Am. Stat. Assoc.
44
,
335
(
1949
).
2.
M. H.
Kalos
,
Phys. Rev.
128
,
1791
(
1962
).
3.
K. E.
Schmidt
and
M. H.
Kalos
,
Applications of the Monte Carlo method in Statistical Physics
(
Springer-Verlag
,
Berlin
,
1984
), Vol.
36
.
4.
J. B.
Anderson
,
J. Chem. Phys.
63
,
1499
(
1975
).
5.
D. J.
Klein
and
H. M.
Pickett
,
J. Chem. Phys.
64
,
4811
(
1976
).
6.
J. B.
Anderson
,
J. Chem. Phys.
65
,
1421
(
1976
).
7.
J. B.
Anderson
,
Int. J. Quantum Chem.
15
,
109
(
1979
).
8.
P.-O.
Löwdin
,
Phys. Rev.
97
,
1474
(
1955
).
9.
N. C.
Handy
,
Chem. Phys. Lett.
74
,
280
(
1980
).
10.
P.
Saxe
,
H. F.
Schaefer
 III
, and
N. C.
Handy
,
Chem. Phys. Lett.
79
,
202
(
1981
).
11.
P. J.
Knowles
and
N. C.
Handy
,
Chem. Phys. Lett.
111
,
315
(
1984
).
12.
E.
Rossi
,
G. L.
Bendazzoli
,
S.
Evangelisti
, and
D.
Maynau
,
Chem. Phys. Lett.
310
,
530
(
1999
).
13.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
14.
D. M.
Arnow
,
M. H.
Kalos
,
M. A.
Lee
, and
K. E.
Schmidt
,
J. Chem. Phys.
77
,
5562
(
1982
).
15.
D. M.
Ceperley
and
B. J.
Alder
,
J. Chem. Phys.
81
,
5844
(
1984
).
16.
D. F.
Coker
and
R. O.
Watts
,
Mol. Phys.
58
,
1113
(
1986
).
17.
G.
Sugiyama
and
S. E.
Koonin
,
Ann. Phys. (N.Y.)
168
,
1
(
1986
).
18.
G. H.
Lang
,
C. W.
Johnson
,
S. E.
Koonin
, and
W. E.
Ormand
,
Phys. Rev. C
48
,
1518
(
1993
).
19.
N.
Rom
,
D. M.
Charutz
, and
D.
Neuhauser
,
Chem. Phys. Lett.
270
,
382
(
1997
).
20.
S.
Jacobi
and
R.
Baer
,
J. Chem. Phys.
120
,
43
(
2004
).
21.
S.
Zhang
and
H.
Krakauer
,
Phys. Rev. Lett.
90
,
136401
(
2003
).
22.
W. A.
Al-Saidi
,
S.
Zhang
, and
H.
Krakauer
,
J. Chem. Phys.
124
,
224101
(
2006
).
23.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
24.
Y.
Saad
,
Iterative Methods for Sparse Linear Systems
(
SIAM
,
Seattle
,
2004
).
25.
Molecular Quantum Mechanics: Selected Papers of N. C. Handy
, edited by
D. C.
Clary
,
S. M.
Colwell
, and
H. F.
Schaefer
(
Taylor and Francis
,
London
,
2004
).
26.
A. J. W.
Thom
and
A.
Alavi
,
J. Chem. Phys.
123
,
204106
(
2005
).
27.
A.
Alavi
and
A. J. W.
Thom
,
Lect. Notes Phys.
703
,
685
(
2006
).
28.
The position of a walker in the list of walkers is determined by the string of nb integers which define the determinant on which the walker is located.
29.
N.
Trivedi
and
D. M.
Ceperley
,
Phys. Rev. B
41
,
4552
(
1990
).
30.
A determinant is uniquely specified by a binary string of length 2M, with 0 to signify an empty spin orbital and a 1 to specify a filled spin orbital. Such a (bit) string requires nb=2M/32 32-bit integers to encode. The sign array is also a 4 byte integer array. Therefore the storage requirement for one walker is nb+1 32-bit integers. As an optional extra, the energy of the walker, Di|H|Di can be stored as well, at the cost of an additional 8 bytes per walker. This means that this energy need not be generated every time at the “death/cloning” step, and saves an O[N2] operation per walker each iteration.
32.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
33.
J.
Olsen
,
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
J. Chem. Phys.
105
,
5082
(
1996
).
34.
M. L.
Leininger
,
W. D.
Allen
,
H. F.
Schaefer
 III
, and
C. D.
Sherrill
,
J. Chem. Phys.
112
,
9213
(
2000
).
35.
J.
Olsen
,
P.
Jørgensen
,
H.
Koch
,
A.
Balkova
, and
R. J.
Bartlett
,
J. Chem. Phys.
104
,
8007
(
1996
).
36.
G. K.-L.
Chan
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
121
,
6110
(
2004
).
37.
H.
Flyvbjerg
and
H. G.
Petersen
,
J. Chem. Phys.
91
,
461
(
1989
).
38.
Y.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
Distasio
, Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnick
,
H. L.
Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Kyrlov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
39.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
40.
S. J.
Chakravorty
,
S. R.
Gwaltney
,
F. A.
Parpia
,
C. F.
Fischer
, and
E. R.
Davidson
,
Phys. Rev. A
47
,
3649
(
1993
).
41.
J. C.
Slater
,
Phys. Rev.
34
,
1293
(
1929
).
42.
E. U.
Condon
,
Phys. Rev.
36
,
1121
(
1930
).
43.
J. C.
Slater
,|
Phys. Rev.
38
,
1109
(
1931
).
You do not currently have access to this content.