Variational calculations employing explicitly correlated Gaussian basis functions have been performed for the ground state of the boron monohydride molecule (BH) and for the boron atom (B). Up to 2000 Gaussians were used for each system. The calculations did not assume the Born–Oppenheimer (BO) approximation. In the optimization of the wave function, we employed the analytical energy gradient with respect to the Gaussian exponential parameters. In addition to the total nonrelativistic energies, we computed scalar relativistic corrections (mass-velocity and Darwin). With those added to the total energies, we estimated the dissociation energy of BH. The non-BO wave functions were also used to compute some expectation values involving operators dependent on the interparticle distances.

1.
W.
Kołos
and
L.
Wolniewicz
,
Rev. Mod. Phys.
35
,
473
(
1963
).
2.
D. M.
Bishop
and
L. M.
Cheung
,
Phys. Rev. A
18
,
1846
(
1978
).
3.
H.
Nakai
,
Int. J. Quantum Chem.
86
,
511
(
2002
).
4.
T.
Ishimoto
,
M.
Tachikawa
, and
U.
Nagashima
,
J. Chem. Phys.
125
,
144103
(
2006
).
5.
A.
Chakraborty
,
M. V.
Pak
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
129
,
014101
(
2008
).
6.
B.
Chen
and
J. B.
Anderson
,
J. Chem. Phys.
102
,
2802
(
1995
).
7.
S. A.
Alexander
and
R. L.
Coldwell
,
J. Chem. Phys.
129
,
114306
(
2008
).
8.
M.
Cafiero
,
S.
Bubin
, and
L.
Adamowicz
,
Phys. Chem. Chem. Phys.
5
,
1491
(
2003
).
9.
S.
Bubin
,
M.
Cafiero
, and
L.
Adamowicz
,
Adv. Chem. Phys.
131
,
377
(
2005
).
10.
L. A.
Curtiss
and
J. A.
Pople
,
J. Chem. Phys.
90
,
2522
(
1989
).
11.
J. M. L.
Martin
,
J. P.
Francois
, and
R.
Gijbels
,
Chem. Phys. Lett.
163
,
387
(
1989
);
J. M. L.
Martin
,
J. P.
Francois
, and
R.
Gijbels
,
J. Chem. Phys.
91
,
4425
(
1989
).
12.
D.
Feller
,
D. A.
Dixon
, and
K. A.
Peterson
,
J. Phys. Chem. A
102
,
7053
(
1998
).
13.
E.
Miliordos
and
A.
Mavridis
,
J. Chem. Phys.
128
,
144308
(
2008
).
14.
C. W.
Bauschlicher
, Jr.
,
S. R.
Langhoff
, and
P. R.
Taylor
,
J. Chem. Phys.
93
,
502
(
1990
).
15.
CODATA 2006 recommended value.
16.
D. B.
Kinghorn
and
L.
Adamowicz
,
J. Chem. Phys.
110
,
7166
(
1999
).
17.
D. B.
Kinghorn
and
L.
Adamowicz
,
Phys. Rev. Lett.
83
,
2541
(
1999
).
18.
S.
Bubin
and
L.
Adamowicz
,
J. Chem. Phys.
118
,
3079
(
2003
).
19.
S.
Bubin
,
L.
Adamowicz
, and
M.
Molski
,
J. Chem. Phys.
123
,
134310
(
2005
).
20.
M.
Stanke
,
D.
Kȩdziera
,
M.
Molski
,
S.
Bubin
,
M.
Barysz
, and
L.
Adamowicz
,
Phys. Rev. Lett.
96
,
233002
(
2006
).
21.
S.
Bubin
and
L.
Adamowicz
,
J. Chem. Phys.
126
,
214305
(
2007
).
22.
S.
Bubin
and
L.
Adamowicz
,
J. Chem. Phys.
128
,
114107
(
2008
).
23.
S.
Bubin
and
L.
Adamowicz
,
Phys. Rev. A
79
,
022501
(
2009
).
24.
S. J.
Chakravorty
,
S. R.
Gwaltney
,
E. R.
Davidson
,
F. A.
Parpia
, and
C. F.
Fischer
,
Phys. Rev. A
47
,
3649
(
1993
).
25.
E. R.
Davidson
,
S. A.
Hagstrom
,
S. J.
Chakravorty
,
V. M.
Umar
, and
C. F.
Fischer
,
Phys. Rev. A
44
,
7071
(
1991
).
26.
M. D.
Brown
,
J. R.
Trail
,
P.
Lopez Rios
, and
R. J.
Needs
,
J. Chem. Phys.
126
,
224110
(
2007
).
You do not currently have access to this content.