We study a model of a light-induced proton pump in artificial reaction centers. The model contains a molecular triad with four electron states (i.e., one donor state, two photosensitive group states, and one acceptor state) as well as a molecular shuttle having one electron and one proton-binding sites. The shuttle diffuses between the sides of the membrane and translocates protons energetically uphill: from the negative side to the positive side of the membrane, harnessing for this purpose the energy of the electron-charge separation produced by light. Using the methods of quantum transport theory we calculate the range of light intensity and transmembrane potentials that maximize both the light-induced proton current and the energy transduction efficiency. We also study the effect of temperature on proton pumping. The light-induced proton pump in our model gives a quantum yield of proton translocation of about 55%. Thus, our results explain previous experiments on these artificial photosynthetic reaction centers.

1.
D.
Gust
and
T. A.
Moore
,
Science
244
,
35
(
1989
).
2.
D.
Gust
,
T. A.
Moore
, and
A. L.
Moore
,
Acc. Chem. Res.
34
,
40
(
2001
).
3.
G. W.
Crabtree
and
N. S.
Lewis
,
Phys. Today
60
(3),
37
(
2007
).
4.
D. A.
LaVan
and
J. N.
Cha
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
5251
(
2006
).
5.
M. R.
Wasielewski
,
J. Org. Chem.
71
,
5051
(
2006
).
6.
M.
Hambourger
,
G. F.
Moore
,
D. M.
Kramer
,
D.
Gust
,
A. L.
Moore
, and
T. A.
Moore
,
Chem. Soc. Rev.
38
,
25
(
2009
).
7.
J.
Barber
,
Chem. Soc. Rev.
38
,
185
(
2009
).
8.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
M.
Raff
,
K.
Roberts
, and
P.
Walter
,
Molecular Biology of the Cell
(
Garland Science
,
New York
,
2002
), Chap. 14.
9.
G.
Steinberg-Yfrach
,
P. A.
Liddell
,
S. C.
Hung
,
A. L.
Moore
,
D.
Gust
, and
T. A.
Moore
,
Nature (London)
385
,
239
(
1997
).
10.
G.
Steinberg-Yfrach
,
J. L.
Rigaud
,
E. N.
Durantini
,
A. L.
Moore
,
D.
Gust
, and
T. A.
Moore
,
Nature (London)
392
,
479
(
1998
).
11.
T. A.
Moore
,
A. L.
Moore
, and
D.
Gust
,
Philos. Trans. R. Soc. London, Ser. B
357
,
1481
(
2002
).
12.
H.
Imahori
,
Org. Biomol. Chem.
2
,
1425
(
2004
).
13.
S.
Bhosale
,
A. L.
Sisson
,
P.
Talukdar
,
A.
Furstenberg
,
N.
Banerji
,
E.
Vauthey
,
G.
Bollot
,
J.
Mareda
,
C.
Roger
,
F.
Wurthner
,
N.
Sakai
, and
S.
Matile
,
Science
313
,
84
(
2006
).
14.
R. E.
Palacios
,
G.
Kodis
,
S. L.
Gould
,
L.
de la Garza
,
A.
Brune
,
D.
Gust
,
T. A.
Moore
, and
A. L.
Moore
,
ChemPhysChem
6
,
2359
(
2005
).
15.
T.
Polivka
,
M.
Pellnor
,
E.
Melo
,
T.
Pascher
,
V.
Sundstrom
,
A.
Osuka
, and
K. R.
Naqvi
,
J. Phys. Chem. C
111
,
467
(
2007
).
16.
M.
Sykora
,
K. A.
Maxwell
,
J. M.
DeSimone
, and
T. J.
Meyer
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
7687
(
2000
).
17.
H.
Imahori
,
J. Phys. Chem. B
108
,
6130
(
2004
).
18.
S.
Saha
,
A. H.
Flood
,
J. F.
Stoddart
,
S.
Impellizzeri
,
S.
Silvi
,
M.
Venturi
, and
A.
Credi
,
J. Am. Chem. Soc.
129
,
12159
(
2007
).
19.
A. C.
Rizzi
,
M.
van Gastel
,
P. A.
Liddell
,
R. E.
Palacios
,
G. F.
Moore
,
G.
Kodis
,
A. L.
Moore
,
T. A.
Moore
,
D.
Gust
, and
S. E.
Braslavsky
,
J. Phys. Chem. A
112
,
4215
(
2008
).
20.
H.
Imahori
,
Y.
Mori
, and
Y.
Matano
,
J. Photochem. Photobiol., B
4
,
51
(
2003
).
21.
J. A.
Soderhall
and
A.
Laaksonen
,
J. Phys. Chem. B
105
,
9308
(
2001
).
22.
L.
Cristian
,
P.
Piotrowiak
, and
R. S.
Farid
,
J. Am. Chem. Soc.
125
,
11814
(
2003
).
23.
A.
Okada
and
T.
Bandyopadhyay
,
J. Chem. Phys.
111
,
1137
(
1999
).
24.
A.
Parusel
,
J. Mol. Model.
4
,
366
(
1998
).
25.
N. S.
Wingreen
,
A. P.
Jauho
, and
Y.
Meir
,
Phys. Rev. B
48
,
8487
(
1993
).
26.
A. Yu.
Smirnov
,
L. G.
Mourokh
, and
F.
Nori
,
Phys. Rev. E
77
,
011919
(
2008
).
27.
A. Yu.
Smirnov
,
S.
Savel’ev
,
L. G.
Mourokh
, and
F.
Nori
,
Phys. Rev. E
78
,
031921
(
2008
).
28.
A. Yu.
Smirnov
,
L. G.
Mourokh
, and
F.
Nori
,
J. Chem. Phys.
130
,
235105
(
2009
).
29.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta
811
,
265
(
1985
).
30.
D. A.
Cherepanov
,
L. I.
Krishtalik
, and
A. Y.
Mulkidjanian
,
Biophys. J.
80
,
1033
(
2001
).
31.
H.
Imahori
,
H.
Yamada
,
D. M.
Guldi
,
Y.
Endo
,
A.
Shimomura
,
S.
Kundu
,
K.
Yamada
,
T.
Okada
,
Y.
Sakata
, and
S.
Fukuzumi
,
Angew. Chem., Int. Ed.
41
,
2344
(
2002
).
32.
J. Y.
Kim
,
K.
Lee
,
N. E.
Coates
,
D.
Moses
,
T. -Q.
Nguen
,
M.
Dante
, and
A. J.
Heeger
,
Science
317
,
222
(
2007
).
33.
A.
Garg
,
J. N.
Onuchic
, and
V.
Ambegaokar
,
J. Chem. Phys.
83
,
4491
(
1985
).
34.
H.
Heitele
,
F.
Pöllinger
,
T.
Häberle
,
M. E.
Michel-Beyerle
, and
H. A.
Staab
,
J. Phys. Chem.
98
,
7402
(
1994
).
35.
H.
Imahori
,
N. V.
Tkachenko
,
V.
Vehmanen
,
K.
Tamaki
,
H.
Lemmetyinen
,
Y.
Sakata
, and
S.
Fukuzumi
,
J. Phys. Chem. A
105
,
1750
(
2001
).
36.
W. W.
Parson
,
Z. T.
Chu
, and
A.
Warshel
,
Biophys. J.
74
,
182
(
1998
).
37.
T.
Geyer
and
V.
Helms
,
Biophys. J.
91
,
927
(
2006
).
38.
D. J.
Milliron
,
S. M.
Hughes
,
Y.
Cui
,
L.
Manna
,
J.
Li
,
L. -W.
Wang
, and
A. P.
Alivisatos
,
Nature (London)
430
,
190
(
2004
).
39.
J. L. C. M.
van de Vossenberg
,
T.
Ubbink-Kok
,
M. G. L.
Elferink
,
A. J. M.
Driessen
, and
W. N.
Konings
,
Mol. Microbiol.
18
,
925
(
1995
).
You do not currently have access to this content.