Vibrational coupled cluster (VCC) calculations of molecular vibrational energy levels can be characterized by the number of modes coupled in the Hamiltonian operator and the number of modes simultaneously excited in the parameter space. We propose a VCC model which includes all two-mode couplings in the Hamiltonian and excitation space but only an approximate treatment of three-mode couplings. The approximation is based on a perturbational analysis and the introduced concepts can also be used for even more accurate treatments. The method is iterative and allows the use of VCC response theory to obtain excitation energies. Furthermore, the method is shown to scale with the number of vibrational modes to the third power which is no higher than the corresponding VCC model with only two-mode couplings. Encouraging benchmark calculations are given for a test set of three- and four-atomic molecules. The fundamentals of the larger ethylene oxide molecule have been calculated as well using a grid-based potential energy surface obtained from electronic coupled cluster theory with singles, doubles, and perturbative triples (CCSD(T)).

1.
O.
Christiansen
,
J. Chem. Phys.
120
,
2140
(
2004
).
2.
O.
Christiansen
,
J. Chem. Phys.
120
,
2149
(
2004
).
3.
J. M.
Bowman
,
S.
Carter
, and
X.
Huang
,
Int. Rev. Phys. Chem.
22
,
533
(
2003
).
4.
R. B.
Gerber
and
J. O.
Jung
, in
Computational Molecular Spectroscopy
, edited by
P.
Jensen
and
P.
Bunker
(
Wiley
,
Chichester
,
2000
).
5.
S.
Hirata
and
K.
Yagi
,
Chem. Phys. Lett.
464
,
123
(
2008
).
6.
O.
Christiansen
,
Phys. Chem. Chem. Phys.
9
,
2942
(
2007
).
7.
D. P.
Tew
,
N. C.
Handy
,
S.
Carter
,
S.
Irle
, and
J.
Bowman
,
Mol. Phys.
101
,
3513
(
2003
).
8.
N.
Gohaud
,
D.
Begue
,
C.
Darrigan
, and
C.
Pouchan
,
J. Comput. Chem.
26
,
743
(
2005
).
9.
D.
Begue
,
N.
Gohaud
,
R.
Brown
, and
C.
Pouchan
,
J. Math. Chem.
40
,
197
(
2006
).
10.
P.
Cassam-Chenaï
and
J.
Liévin
,
J. Comput. Chem.
27
,
627
(
2006
).
11.
G.
Rauhut
,
J. Chem. Phys.
127
,
184109
(
2007
).
12.
P.
Cassam-Chenaï
and
J.
Liévin
,
Int. J. Quantum Chem.
93
,
245
(
2003
).
13.
K.
Yagi
,
S.
Hirata
, and
K.
Hirao
,
Phys. Chem. Chem. Phys.
10
,
1781
(
2008
).
14.
E.
Matito
,
J.
Barroso
,
E.
Besal
,
O.
Christiansen
, and
J.
Luis
,
Theor. Chem. Acc.
123
,
41
(
2009
).
15.
J.
Vázquez
and
J. F.
Stanton
,
Mol. Phys.
104
,
377
(
2006
).
16.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H. D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
17.
H.
Meyer
,
F. L.
Quéré
,
C.
Léonard
, and
F.
Gatti
,
Chem. Phys.
329
,
179
(
2006
).
18.
O. L.
Polyansky
,
A. G.
Csaszar
,
S. V.
Shirin
,
N. F.
Zobov
,
P.
Barletta
,
J.
Tennyson
,
D. W.
Schwenke
, and
P. J.
Knowles
,
Science
299
,
539
(
2003
).
19.
S. N.
Yurchenko
,
M.
Carvajal
,
P.
Jensen
,
H.
Lin
,
J.
Zheng
, and
W.
Thiel
,
Mol. Phys.
103
,
359
(
2005
).
20.
S. N.
Yurchenko
,
W.
Thiel
, and
P.
Jensen
,
J. Mol. Spectrosc.
245
,
126
(
2007
).
21.
E.
Matyus
,
G.
Czako
,
B. T.
Sutcliffe
, and
A. G.
Csaszar
,
J. Chem. Phys.
127
,
084102
(
2007
).
22.
X.
Wang
and
T.
Carrington
,
J. Chem. Phys.
129
,
234102
(
2008
).
23.
S.
Carter
,
S. J.
Culik
, and
J. M.
Bowman
,
J. Chem. Phys.
107
,
10458
(
1997
).
24.
J. O.
Jung
and
R. B.
Gerber
,
J. Chem. Phys.
105
,
10332
(
1996
).
25.
K.
Yagi
,
S.
Hirata
, and
K.
Hirao
,
Theor. Chim. Acta
118
,
681
(
2007
).
26.
G.
Rauhut
,
J. Chem. Phys.
121
,
9313
(
2004
).
27.
D.
Toffoli
,
J.
Kongsted
, and
O.
Christiansen
,
J. Chem. Phys.
127
,
204106
(
2007
).
28.
E.
Matito
,
D.
Toffoli
, and
O.
Christiansen
,
J. Chem. Phys.
130
,
134104
(
2009
).
29.
P.
Seidler
and
O.
Christiansen
,
J. Chem. Phys.
126
,
204101
(
2007
).
30.
P.
Seidler
,
M. B.
Hansen
, and
O.
Christiansen
,
J. Chem. Phys.
128
,
154113
(
2008
).
31.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
32.
Y. S.
Lee
and
R. J.
Bartlett
,
J. Chem. Phys.
80
,
4371
(
1984
).
33.
M.
Urban
,
J.
Noga
,
S. J.
Cole
, and
R. J.
Bartlett
,
J. Chem. Phys.
83
,
4041
(
1985
).
34.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
J. Chem. Phys.
103
,
7429
(
1995
).
35.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic Structure Theory
(
Wiley
,
Chinchester
,
2000
).
36.
T. D.
Crawford
and
H. F.
Schaefer
,
Rev. Comput. Chem.
14
,
33
(
1999
).
37.
J.
Gauss
, in
Coupled Cluster Theory
,
Encyclopedia of Computational Chemistry
, edited by
P. v.R.
Schleyer
,
P. R.
Schreiner
, and
H. F.
Schaefer
 III
(
Wiley
,
New York
,
1998
).
38.
P.
Piecuch
,
K.
Kowalski
,
I. S. O.
Pimienta
, and
M. J.
McGuire
,
Int. Rev. Phys. Chem.
21
,
527
(
2002
).
39.
O.
Christiansen
,
Theor. Chem. Acc.
116
,
106
(
2006
).
40.
R. J.
Bartlett
and
M.
Musial
,
Rev. Mod. Phys.
79
,
291
(
2007
).
41.
O.
Christiansen
,
P.
Jørgensen
, and
C.
Hättig
,
Int. J. Quantum Chem.
68
,
1
(
1998
).
42.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
J. Chem. Phys.
105
,
1451
(
1996
).
43.
MIDASCPP, molecular interactions, dynamics, and simulations chemistry program package in C++, Aarhus University, see http://www.chem.au.dk/~midas.
44.
R.
Farwig
,
Math. Comput.
46
,
577
(
1986
).
45.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
46.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
47.
J.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
48.
D. E.
Woon
and
J.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
49.
D.
Woon
,
K.
Peterson
, and
T.
Dunning
, Jr.
(unpublished).
50.
See EPAPS supplementary material at http://dx.doi.org/10.1063/1.3158946 for all numerical results of the benchmark calculations.
51.
D.
Begue
,
N.
Gohaud
,
C.
Pouchan
,
P.
Cassam-Chenai
, and
J.
Lievin
,
J. Chem. Phys.
127
,
164115
(
2007
).
52.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
, and
P. G.
Szalay
, and
R. J.
Bartlett
with contributions from
A. A.
Auer
,
D. E.
Bernholdt
,
O.
Christiansen
,
M. E.
Harding
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
D.
Jonsson
,
J.
Jusélius
,
W. J.
Lauderdale
,
T.
Metzroth
,
C.
Michauk
,
D. P.
O’Neill
,
D. R.
Price
,
K.
Ruud
,
F.
Schiffmann
,
M. E.
Varner
,
J.
Vázquez
, and the integral packages by
J.
Almlöf
and
P. R.
Taylor
, MOLECULE,
P. R.
Taylor
, PROPS, and
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
, ABACUS. For the current version, see http://www.aces2.de.
53.
W.
Györffy
,
P.
Seidler
, and
O.
Christiansen
, “
Solving the eigenvalue equations of correlated vibrational structure methods: Preconditioning and targeting strategies
,”
J. Chem. Phys.
(submitted).
54.
T.
Nakanaga
,
J. Chem. Phys.
74
,
5384
(
1981
).
55.
T.
Nakanaga
,
J. Chem. Phys.
73
,
5451
(
1980
).
56.
R. C.
Lord
and
B.
Nolin
,
J. Chem. Phys.
24
,
656
(
1956
).
57.
N. W.
Cant
and
W. J.
Armstead
,
Spectrochim. Acta, Part A
31
,
839
(
1975
).
58.
A.
Schriver
,
J.
Coanga
,
L.
Schriver-Mazzuoli
, and
P.
Ehrenfreund
,
Chem. Phys.
303
,
13
(
2004
).
59.
J. E.
Bertie
and
S. M.
Jacobs
,
J. Chem. Phys.
68
,
97
(
1978
).

Supplementary Material

You do not currently have access to this content.