First-principles band structure calculations coupled with the Boltzmann transport theory are used to study the thermoelectric properties in pentacene and rubrene crystals. In the constant relaxation time and rigid band approximations, the electronic contribution to the Seebeck coefficient is obtained. The absolute value of Seebeck coefficient and its temperature and carrier density dependences are in quantitative agreement with the recent field-effect-modulated measurement. The dimensionless thermoelectric figure of merit is further evaluated based on the calculated transport coefficients and experimental parameters. The peak values of figure of merit in pentacene fall in the range of 0.8–1.1, which are close to those of the best bulk thermoelectric materials. Our investigations show that organic semiconductors can be potentially good thermoelectric materials for near-room-temperature applications.

1.
S. R.
Forrest
,
Nature (London)
428
,
911
(
2004
).
2.
K. P.
Pernstich
,
B.
Rossner
, and
B.
Batlogg
,
Nature Mater.
7
,
321
(
2008
).
3.
N.
Kim
,
B.
Domercq
,
S.
Yoo
,
A.
Christensen
,
B.
Kippelen
, and
S.
Graham
,
Appl. Phys. Lett.
87
,
241908
(
2005
).
4.
Y.
Okada
,
M.
Uno
, and
J.
Takeya
,
Mater. Res. Soc. Symp. Proc.
B10
,
1154
(
2009
).
5.
G. S.
Nolas
,
J.
Sharp
, and
H. J.
Goldsmid
,
Thermoelectrics: Basic Principles and New Materials Developments
(
Springer
,
New York
,
2001
).
6.
G. J.
Snyder
and
E. S.
Toberer
,
Nature Mater.
7
,
105
(
2008
);
M. S.
Dresselhaus
,
G.
Chen
,
M. Y.
Tang
,
R. G.
Yang
,
H.
Lee
,
D. Z.
Wang
,
Z. F.
Ren
,
J. P.
Fleurial
, and
P.
Gogna
,
Adv. Mater. (Weinheim, Ger.)
19
,
1043
(
2007
);
A. I.
Hochbaum
,
R. K.
Chen
,
R. D.
Delgado
,
W. J.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P. D.
Yang
,
Nature (London)
451
,
163
(
2008
);
A. I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
J. K.
Yu
,
W. A.
Goddard
, and
J. R.
Heath
,
Nature (London)
451
,
168
(
2008
);
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O'Quinn
,
Nature (London)
413
,
597
(
2001
).
8.
G. K.
Madsen
,
J. Am. Chem. Soc.
128
,
12140
(
2006
).
9.
J.
Yang
,
H. M.
Li
,
T.
Wu
,
W. Q.
Zhang
,
L. D.
Chen
, and
J. H.
Yang
,
Adv. Funct. Mater.
18
,
2880
(
2008
).
10.
T. J.
Scheidemantel
,
C.
Ambrosch-Draxl
,
T.
Thonhauser
,
J. V.
Badding
, and
J. O.
Sofo
,
Phys. Rev. B
68
,
125210
(
2003
).
11.
X.
Gao
,
K.
Uehara
,
D. D.
Klug
,
S.
Patchkovskii
,
J. S.
Tse
, and
T. M.
Tritt
,
Phys. Rev. B
72
,
125202
(
2005
);
J. S.
Rhyee
,
K. H.
Lee
,
S. M.
Lee
,
E.
Cho
,
S. I.
Kim
,
E.
Lee
,
Y. S.
Kwon
,
J. H.
Shim
, and
G.
Kotliar
,
Nature (London)
459
,
965
(
2009
).
12.
B. R.
Nag
,
Electron Transport in Compound Semiconductors
(
Springer-Verlag
,
Berlin
,
1980
).
13.
G. K. H.
Madsen
and
D. J.
Singh
,
Comput. Phys. Commun.
175
,
67
(
2006
).
14.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
);
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
15.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
16.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
17.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
18.
K.
Hummer
and
C.
Ambrosch-Draxl
,
Phys. Rev. B
72
,
205205
(
2005
).
19.
S.
Schiefer
,
M.
Huth
,
A.
Dobrinevski
, and
B.
Nickel
,
J. Am. Chem. Soc.
129
,
10316
(
2007
).
20.
O. D.
Jurchescu
,
A.
Meetsma
, and
T. T.
Palstra
,
Acta Crystallogr. Sect. B: Struct. Sci.
62
,
330
(
2006
).
21.
A.
von Mühlenen
,
N.
Errien
,
M.
Schaer
,
M. N.
Bussac
, and
L.
Zuppiroli
,
Phys. Rev. B
75
,
115338
(
2007
).
22.
M. E.
Gershenson
,
V.
Podzorov
, and
A. F.
Morpurgo
,
Rev. Mod. Phys.
78
,
973
(
2006
).
23.
D.
Oberhoff
,
K. P.
Pernstich
,
D. J.
Gundlach
, and
B.
Batlogg
,
IEEE Trans. Electron Devices
54
,
17
(
2007
).
24.
M.
Cutler
and
N. F.
Mott
,
Phys. Rev.
181
,
1336
(
1969
).
25.
O. D.
Jurchescu
,
J.
Baas
, and
T. T. M.
Palstra
,
Appl. Phys. Lett.
84
,
3061
(
2004
).
26.
V.
Podzorov
,
E.
Menard
,
A.
Borissov
,
V.
Kiryukhin
,
J. A.
Rogers
, and
M. E.
Gershenson
,
Phys. Rev. Lett.
93
,
086602
(
2004
).
You do not currently have access to this content.