We report compression and decompression experiments of hexagonal ice in a piston cylinder setup in the temperature range of 170–220 K up to pressures of 1.6 GPa. The main focus is on establishing the effect that an increase in compression rate up to 4000 MPa/min has on the phase changes incurred at high pressures. While at low compression rates, a phase change to stable ice II takes place (in agreement with earlier comprehensive studies), we find that at higher compression rates, increasing fractions and even pure ice III forms from hexagonal ice. We show that the critical compression rate, above which mainly the metastable ice III polymorph is produced, decreases by a factor of 30 when decreasing the temperature from 220 to 170 K. At the highest rate capable with our equipment, we even find formation of an ice V fraction in the mixture, which is metastable with respect to ice II and also metastable with respect to ice III. This indicates that at increasing compression rates, progressively more metastable phases of ice grow from hexagonal ice. Since ices II, III, and V differ very much in, e.g., strength and rheological properties, we have prepared solids of very different mechanical properties just by variation in compression rate. In addition, these metastable phases have stability regions in the phase diagrams only at much higher pressures and temperatures. Therefore, we anticipate that the method of isothermal compression at low temperatures and high compression rates is a tool for the academic and industrial polymorph search with great potential.

1.
A.
Navrotsky
,
Rev. Mineral.
37
,
319
(
1998
).
2.
V. V.
Brazhkin
,
High Press. Res.
27
,
333
(
2007
).
3.
C.
Cacela
,
A.
Baudot
,
M. L.
Duarte
,
A. M.
Matos-Beja
,
M.
Ramos Silva
,
J. A.
Paixao
, and
R.
Fausto
,
J. Mol. Struct.
649
,
143
(
2003
).
4.
V.
Ischenko
,
U.
Englert
, and
M.
Jansen
,
Chemistry (Weinheim, Ger.)
11
,
1375
(
2005
);
K.
Winkel
,
W.
Hage
,
T.
Loerting
,
S. L.
Price
, and
E.
Mayer
,
J. Am. Chem. Soc.
129
,
13863
(
2007
).
[PubMed]
5.
J. A.
Hollingsworth
,
D. M.
Poojary
,
A.
Clearfield
, and
W. E.
Buhro
,
J. Am. Chem. Soc.
122
,
3562
(
2000
);
H.
Miura
,
T.
Ushio
,
K.
Nagai
,
D.
Fujimoto
,
Z.
Lepp
,
H.
Takahashi
, and
R.
Tamura
,
Cryst. Growth Des.
3
,
959
(
2003
);
E. H.
Lee
,
S. X. M.
Boerrigter
,
A. C. F.
Rumondor
,
S. P.
Chamarthy
, and
S. R.
Byrn
,
Cryst. Growth Des.
8
,
91
(
2008
).
6.
Z.
Liu
,
L.
Zhong
,
P.
Ying
,
Z.
Feng
, and
C.
Li
,
Biophys. Chem.
132
,
18
(
2008
).
7.
R. J.
Davey
,
S. J.
Maginn
,
S. J.
Andrews
,
A. M.
Buckley
,
D.
Cottier
,
P.
Dempsey
,
J. E.
Rout
,
D. R.
Stanley
, and
A.
Taylor
,
Nature (London)
366
,
248
(
1993
).
8.
S. L.
Childs
,
L. J.
Chyall
,
J. T.
Dunlap
,
D. A.
Coates
,
B. C.
Stahly
, and
G. P.
Stahly
,
Cryst. Growth Des.
4
,
441
(
2004
);
J. -M.
Ha
,
J. H.
Wolf
,
M. A.
Hillmyer
, and
M. D.
Ward
,
J. Am. Chem. Soc.
126
,
3382
(
2004
).
[PubMed]
9.
T.
Kowalewski
and
A.
Galeski
,
J. Appl. Polym. Sci.
44
,
95
(
1992
);
S. H.
Tolbert
and
A. P.
Alivisatos
,
Annu. Rev. Phys. Chem.
46
,
595
(
1995
);
[PubMed]
I.
Manna
,
P. P.
Chattopadhyay
,
P.
Nandi
,
F.
Banhart
, and
H. J.
Fecht
,
J. Appl. Phys.
93
,
1520
(
2003
).
10.
G.
Ohtani
and
M.
Senna
,
Mater. Sci. Monogr.
10
,
668
(
1982
);
F. P. A.
Fabbiani
,
D. R.
Allan
,
W. I. F.
David
,
S. A.
Moggach
,
S.
Parsons
, and
C. R.
Pulham
,
Cryst. Eng. Comm.
6
,
504
(
2004
);
F. P. A.
Fabbiani
,
D. R.
Allan
,
A.
Dawson
,
D. J.
Francis
,
W. G.
Marshall
, and
C. R.
Pulham
,
Inorg. Chim. Acta
361
,
487
(
2008
).
11.
I. D. H.
Oswald
,
I.
Chataigner
,
S.
Elphick
,
F. P. A.
Fabbiani
,
A. R.
Lennie
,
J.
Maddaluno
,
W. G.
Marshall
,
T. J.
Prior
,
C. R.
Pulham
, and
R. I.
Smith
,
Cryst. Eng. Comm.
11
,
359
(
2009
).
12.
E.
Gregoryanz
,
A. F.
Goncharov
,
R. J.
Hemley
,
H. -k.
Mao
,
M.
Somayazulu
, and
G.
Shen
,
Phys. Rev. B
66
,
224108
(
2002
);
V. V.
Brazhkin
and
A. G.
Lyapin
,
Nature Mater.
3
,
497
(
2004
);
G.
Heymann
,
T.
Soltner
, and
H.
Huppertz
,
Solid State Sci.
8
,
821
(
2006
);
A. F.
Goncharov
,
J. C.
Crowhurst
,
V. V.
Struzhkin
, and
R. J.
Hemley
,
Phys. Rev. Lett.
101
,
095502
(
2008
).
[PubMed]
13.
G.
Tammann
,
Kristallisieren und Schmelzen
(
Barth
,
Leipzig
,
1903
);
G.
Tammann
,
Z. Anorg. Chem.
63
,
285
(
1910
).
14.
G.
Tammann
,
Z. Phys. Chem.
72
,
609
(
1910
).
15.
P. W.
Bridgman
,
Proc. Am. Acad. Arts Sci.
47
,
439
(
1912
).
16.
P. W.
Bridgman
,
J. Chem. Phys.
3
,
597
(
1935
).
17.
J. P.
Marckmann
and
E.
Whalley
,
J. Chem. Phys.
41
,
1450
(
1964
);
G. J.
Wilson
,
R. K.
Chan
,
D. W.
Davidson
, and
E.
Whalley
,
J. Chem. Phys.
43
,
2384
(
1965
).
18.
B.
Kamb
,
A.
Prakash
, and
C.
Knobler
,
Acta Crystallogr.
22
,
706
(
1967
).
19.
L. F.
Evans
,
J. Appl. Phys.
38
,
4930
(
1967
).
20.
H.
Engelhardt
and
B.
Kamb
,
J. Chem. Phys.
75
,
5887
(
1981
).
21.
C. G.
Salzmann
,
T.
Loerting
,
I.
Kohl
,
E.
Mayer
, and
A.
Hallbrucker
,
J. Phys. Chem. B
106
,
5587
(
2002
).
22.
C. G.
Salzmann
,
I.
Kohl
,
T.
Loerting
,
E.
Mayer
, and
A.
Hallbrucker
,
Can. J. Phys.
81
,
25
(
2003
).
23.
C.
Lobban
,
J. L.
Finney
, and
W. F.
Kuhs
,
Nature (London)
391
,
268
(
1998
);
M.
Koza
,
H.
Schober
,
A.
Tölle
,
F.
Fujara
, and
T.
Hansen
,
Nature (London)
397
,
660
(
1999
).
24.
T.
Loerting
,
I.
Kohl
,
C.
Salzmann
,
E.
Mayer
, and
A.
Hallbrucker
,
J. Chem. Phys.
116
,
3171
(
2002
).
25.
C. G.
Salzmann
,
P. G.
Radaelli
,
A.
Hallbrucker
,
E.
Mayer
, and
J. L.
Finney
,
Science
311
,
1758
(
2006
).
26.
V. F.
Petrenko
and
R. W.
Whitworth
,
Physics of Ice
(
Oxford University Press
,
Oxford
,
1999
).
27.
T.
Matsuo
,
Y.
Tajima
, and
H.
Suga
,
J. Phys. Chem. Solids
47
,
165
(
1986
).
28.
E.
Whalley
,
J. B. R.
Heath
, and
D. W.
Davidson
,
J. Chem. Phys.
48
,
2362
(
1968
);
G. P.
Arnold
,
R. G.
Wenzel
,
S. W.
Rabideau
,
N. G.
Nereson
, and
A. L.
Bowman
,
J. Chem. Phys.
55
,
589
(
1971
);
S. J.
LaPlaca
,
W. C.
Hamilton
,
B.
Kamb
, and
A.
Prakash
,
J. Chem. Phys.
58
,
567
(
1973
);
B.
Minceva-Sukarova
,
W. F.
Sherman
, and
G. R.
Wilkinson
,
J. Mol. Struct.
115
,
137
(
1984
).
29.
M. M.
Koza
,
H.
Schober
,
T.
Hansen
,
A.
Tölle
, and
F.
Fujara
,
Phys. Rev. Lett.
84
,
4112
(
2000
).
30.
C.
Lobban
,
J. L.
Finney
, and
W. F.
Kuhs
,
J. Chem. Phys.
112
,
7169
(
2000
).
31.
R. L.
McFarlan
,
J. Chem. Phys.
4
,
253
(
1936
);
J. E.
Bertie
,
L. D.
Calvert
, and
E.
Whalley
,
J. Chem. Phys.
38
,
840
(
1963
);
B.
Kamb
,
W. C.
Hamilton
,
S. J.
LaPlaca
, and
A.
Prakash
,
J. Chem. Phys.
55
,
1934
(
1971
);
W. B.
Durham
,
S. H.
Kirby
,
H. C.
Heard
, and
L. A.
Stern
,
J. Phys. (Paris)
48
,
C1
(
1987
);
S. H.
Kirby
,
W. B.
Durham
, and
L. A.
Stern
, in
Physics and Chemistry of Ice
, edited by
N.
Maeno
and
T.
Hondoh
(
Hokkaido University Press
,
Sapporo
,
1992
), p.
456
.
32.
W. B.
Durham
,
S. H.
Kirby
,
H. C.
Heard
,
L. A.
Stern
, and
C. O.
Boro
,
J. Geophys. Res.
93
,
10
(
1988
).
33.
K.
Bennett
,
H. R.
Wenk
,
W. B.
Durham
,
L. A.
Stern
, and
S. H.
Kirby
,
Philos. Mag. A
76
,
413
(
1997
).
34.
M.
Bauer
,
M. S.
Elsaesser
,
K.
Winkel
,
E.
Mayer
, and
T.
Loerting
,
Phys. Rev. B
77
,
220105
(
2008
).
35.
W. B.
Durham
,
L. A.
Stern
, and
S. H.
Kirby
,
J. Geophys. Res.
101
,
2989
(
1996
).
36.
G. S.
Kell
and
E.
Whalley
,
J. Chem. Phys.
48
,
2359
(
1968
).
37.
O.
Mishima
and
S.
Endo
,
J. Chem. Phys.
73
,
2454
(
1980
);
M.
Scheuermann
,
B.
Geil
,
F.
Löw
, and
F.
Fujara
,
J. Chem. Phys.
130
,
024506
(
2009
).
[PubMed]
38.
K.
Winkel
,
W.
Schustereder
,
I.
Kohl
,
C. G.
Salzmann
,
E.
Mayer
, and
T.
Loerting
, in
Proceedings of the 11th International Conference on the Physics and Chemistry of Ice
, edited by
W. F.
Kuhs
(
RSC
,
Dorchester
,
2007
), pp.
641
.
39.
T.
Loerting
,
W.
Schustereder
,
K.
Winkel
,
C. G.
Salzmann
,
I.
Kohl
, and
E.
Mayer
,
Phys. Rev. Lett.
96
,
025702
(
2006
).
40.
K.
Winkel
,
M. S.
Elsaesser
,
M.
Seidl
,
M.
Bauer
,
E.
Mayer
, and
T.
Loerting
,
J. Phys.: Condens. Matter
20
,
494212
(
2008
).
41.
I.
Kohl
,
E.
Mayer
, and
A.
Hallbrucker
,
J. Phys. Chem. B
104
,
12102
(
2000
);
T.
Loerting
,
C.
Salzmann
,
I.
Kohl
,
E.
Mayer
, and
A.
Hallbrucker
,
Phys. Chem. Chem. Phys.
3
,
5355
(
2001
);
I.
Kohl
,
T.
Loerting
,
C.
Salzmann
,
E.
Mayer
, and
A.
Hallbrucker
, in
New Kinds of Phase Transitions: Transformations in Disordered Substances
,
NATO Advanced Studies Institute, Series II: Mathematics, Physics and Chemistry
, edited by
V. V.
Brazhkin
,
S. V.
Buldyrev
,
V. N.
Ryzhov
, and
H. E.
Stanley
(
Kluwer
,
Amsterdam
,
2002
), Vol.
81
, pp.
325
;
C. G.
Salzmann
,
T.
Loerting
,
S.
Klotz
,
P. W.
Mirwald
,
A.
Hallbrucker
, and
E.
Mayer
,
Phys. Chem. Chem. Phys.
8
,
386
(
2006
);
[PubMed]
T.
Loerting
,
K.
Winkel
,
C. G.
Salzmann
, and
E.
Mayer
,
Phys. Chem. Chem. Phys.
8
,
2810
(
2006
).
[PubMed]
42.
I.
Kohl
,
E.
Mayer
, and
A.
Hallbrucker
,
Phys. Chem. Chem. Phys.
3
,
602
(
2001
).
43.
Y. P.
Handa
,
D. D.
Klug
, and
E.
Whalley
,
Can. J. Chem.
66
,
919
(
1988
).
44.
See EPAPS supplementary material at http://dx.doi.org/10.1063/1.3271651 for a detailed description of the phase analysis of the x-ray powder diffraction data by application of the Rietveld method.
45.
W.
Kraus
and
G.
Nolze
,
J. Appl. Crystallogr.
29
,
301
(
1996
).
46.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
J. Phys. Colloq.
C8
,
239
(
1984
).
47.
C. G.
Salzmann
,
E.
Mayer
, and
A.
Hallbrucker
,
Phys. Chem. Chem. Phys.
6
,
5156
(
2004
).
48.
W. B.
Durham
,
H. C.
Heard
, and
S. H.
Kirby
,
J. Geophys. Res. B
88
,
377
(
1983
);
K.
Echelmeyer
and
B.
Kamb
,
Geophys. Res. Lett.
13
,
693
(
1986
).
49.
T. C.
Wu
,
W. A.
Bassett
,
P. C.
Burnley
, and
M. S.
Weathers
,
J. Geophys. Res., [Solid Earth]
98
,
19767
(
1993
);
L.
Kerschhofer
,
C.
Dupas
,
M.
Liu
,
T. G.
Sharp
,
W. B.
Durham
, and
D. C.
Rubie
,
Miner. Mag.
62
,
617
(
1998
);
M.
Liu
,
L.
Kerschhofer
,
J. L.
Mosenfelder
, and
D. C.
Rubie
,
J. Geophys. Res., [Solid Earth]
103
,
23897
(
1998
).

Supplementary Material

You do not currently have access to this content.