We examined dispersion phenomena of solutes in helical flow in a concentric annulus through a multiscale approach. The helical flow was developed by the combination of the Poiseuille flow and Couette flow. Here, we present an analytic model that can address the multidimensional Taylor dispersion in the helical flow under a lateral field of thermophoresis (or thermal diffusion) in the gapwise direction. Macroscopic parameters including the average solute velocity and dispersivity were analyzed using relevant microscopic physicochemical properties. The mathematically obtained results were validated by the numerical simulation carried out in this study. The findings show that macrotransport processes are robust and straightforward to handle multidimensional dispersion phenomena of solutes in helical flow. This study is expected to provide a theoretical platform for applications of helical flow such as tube exchangers, oil drilling, and multidimensional field flow fractionations (e.g., helical flow field flow fractionation).

1.
H.
Brenner
and
D. A.
Edwards
,
Macrotransport Processes
(
Butterworth-Heinemann
,
Boston
,
1993
).
2.
N. W.
Choi
,
M.
Cabodi
,
B.
Held
,
J. P.
Gleghorn
,
L. J.
Bonassar
, and
A. D.
Stroock
,
Nature Mater.
6
,
908
(
2007
).
3.
N.
Laachi
and
K. D.
Dorfman
,
Electrophoresis
28
,
665
(
2007
).
4.
G.
Taylor
,
Proc. R. Soc. London, Ser. A
219
,
186
(
1953
).
5.
R.
Aris
,
Proc. R. Soc. London, Ser. A
235
,
67
(
1956
).
6.
Z.
Chen
and
A.
Chauhan
,
Phys. Fluids
18
,
067105
(
2006
).
8.
M.
Shapiro
and
H.
Brenner
,
Phys. Fluids A
2
,
1731
(
1990
).
9.
M.
Shapiro
and
H.
Brenner
,
Phys. Fluids A
2
,
1744
(
1990
).
10.
S. K.
Griffiths
and
R. H.
Nilson
,
Anal. Chem.
78
,
8134
(
2006
).
11.
H.
Zhao
and
H. H.
Bau
,
Anal. Chem.
79
,
7792
(
2007
).
12.
M. P.
Escudier
and
I. W.
Gouldson
,
Int. J. Heat Fluid Flow
16
,
156
(
1995
).
13.
N. S.
Woo
,
Y. J.
Kim
, and
Y. K.
Hwang
,
ASME J. Fluids Eng.
128
,
113
(
2006
).
14.
A. J.
Pearlstein
and
M. P.
Shiue
,
Sep. Sci. Technol.
30
,
2251
(
1995
).
15.
R. K.
Shah
and
A. L.
London
,
Laminar Flow Forced Convection
(
Academic
,
New York
,
1978
).
16.
D. A.
Siginer
and
S. I.
Bakhtiyarov
,
J. Non-Newtonian Fluid Mech.
78
,
119
(
1998
).
17.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport phenomena
(
Wiley
,
New York
,
1960
).
18.
A. D.
Mehta
,
J. T.
Finer
, and
J. A.
Spudich
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
7927
(
1997
).
19.
D.
Reith
and
F.
Muller-Plathe
,
J. Chem. Phys.
112
,
2436
(
2000
).
20.
W. H.
Furry
,
R. C.
Jones
, and
L.
Onsager
,
Phys. Rev.
55
,
1083
(
1939
).
21.
B. O.
Arnarson
and
J. T.
Willits
,
Phys. Fluids
10
,
1324
(
1998
).
22.
P. M.
Shiundu
,
P. S.
Williams
, and
J. C.
Giddings
,
J. Colloid Interface Sci.
266
,
366
(
2003
).
23.
L.
Pasti
,
E. A.
Ventosa
,
I.
Mingozzi
, and
F.
Dondi
,
J. Sep. Sci.
29
,
1088
(
2006
).
24.
P.
Blanco
,
P.
Polyakov
,
M. M.
Bou-Ali
, and
S.
Wiegand
,
J. Phys. Chem. B
112
,
8340
(
2008
).
25.
O.
Takayasu
,
I.
Makino
, and
T.
Takeuchi
,
Int. J. Appl. Radiat. Isot.
32
,
839
(
1981
).
26.
S.
Wiegand
,
H.
Ning
, and
H.
Kriegs
,
J. Phys. Chem. B
111
,
14169
(
2007
).
27.
J. C.
Giddings
,
F. J.
Yang
, and
M. N.
Myers
,
Science
193
,
1244
(
1976
).
29.
K. D.
Caldwell
,
L. F.
Kesner
,
M. N.
Myers
, and
J. C.
Giddings
,
Science
176
,
296
(
1972
).
30.
K. G.
Wahlund
and
J. C.
Giddings
,
Anal. Chem.
59
,
1332
(
1987
).
31.
J. C.
Giddings
,
P. S.
Williams
, and
R.
Beckett
,
Anal. Chem.
59
,
28
(
1987
).
32.
M. P.
Shiue
and
A. J.
Pearlstein
,
J. Chromatogr. A
707
,
87
(
1995
).
33.
R. C.
Diprima
,
J. Fluid Mech.
9
,
621
(
1960
).
34.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
Wiley
,
New York
,
1987
).
35.
K.
Vajravelu
,
S.
Sreenadh
, and
G. V.
Reddy
,
Int. J. Non-Linear Mech.
41
,
761
(
2006
).
36.
J.
Jimenez
and
J. A.
Zufiria
,
J. Fluid Mech.
178
,
53
(
1987
).
37.
M.
Martin
,
B. R.
Min
, and
M. H.
Moon
,
J. Chromatogr. A
788
,
121
(
1997
).
38.
M. E.
Hovingh
,
G. H.
Thompson
, and
J. C.
Giddings
,
Anal. Chem.
42
,
195
(
1970
).
You do not currently have access to this content.