Quantum computers, if available, could substantially accelerate quantum simulations. We extend this result to show that the computation of molecular properties (energy derivatives) could also be sped up using quantum computers. We provide a quantum algorithm for the numerical evaluation of molecular properties, whose time cost is a constant multiple of the time needed to compute the molecular energy, regardless of the size of the system. Molecular properties computed with the proposed approach could also be used for the optimization of molecular geometries or other properties. For that purpose, we discuss the benefits of quantum techniques for Newton’s method and Householder methods. Finally, global minima for the proposed optimizations can be found using the quantum basin hopper algorithm, which offers an additional quadratic reduction in cost over classical multi-start techniques.

1.
S.
Bratož
,
Colloq. Int. C. N. R. S.
82
,
287
(
1958
).
3.
4.
T.
Helgaker
and
P.
Jørgensen
,
Adv. Quantum Chem.
19
,
183
(
1988
).
5.
Y.
Yamaguchi
,
J. D.
Goddard
,
Y.
Osamura
, and
H.
Schaefer
,
A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
(
Oxford University Press
,
New York
,
1994
).
6.
R.
Shepard
, in
Modern Electronic Structure Theory
, edited by
D.
Yarkony
(
World Scientific
,
Singapore
,
1995
), pp.
345
458
.
7.
P.
Pulay
, in
Modern Electronic Structure Theory
, edited by
D.
Yarkony
(
World Scientific
,
Singapore
,
1995
), pp.
1191
1240
.
8.
T.
Helgaker
, in
The Encyclopedia of Computational Chemistry
, edited by
P. v. R.
Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollman
,
H. F.
Schaefer
 III
, and
P. R.
Schreiner
(
Wiley
,
New York
,
1998
), pp.
1157
1169
.
9.
A.
Aspuru-Guzik
,
A. D.
Dutoi
,
P. J.
Love
, and
M.
Head-Gordon
,
Science
309
,
1704
(
2005
).
10.
H.
Wang
,
S.
Kais
,
A.
Aspuru-Guzik
, and
M. R.
Hoffmann
,
Phys. Chem. Chem. Phys.
10
,
5388
(
2008
).
11.
I.
Kassal
,
S. P.
Jordan
,
P. J.
Love
,
M.
Mohseni
, and
A.
Aspuru-Guzik
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
18681
(
2008
).
12.
L.
Grover
,
Proceedings of the 28th Annual ACM Symposium on the Theory of Computing
,
1996
(unpublished), pp.
212
219
.
13.
A. N.
Tikhonov
and
V. Y.
Arsenin
,
Solutions of Ill-Posed Problems
(
Winston
,
Washington
,
1977
).
14.
S. P.
Jordan
,
Phys. Rev. Lett.
95
,
050501
(
2005
).
15.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
New York
,
2000
).
16.
S.
Aaronson
,
Quantum Inf. Comput.
3
,
165
(
2003
).
17.
J.
Kempe
,
A.
Kitaev
, and
O.
Regev
,
SIAM J. Comput.
35
,
1070
(
2006
).
18.
A. Y.
Kitaev
, e-print arXiv:quant-ph/9511026.
19.
D. S.
Abrams
and
S.
Lloyd
,
Phys. Rev. Lett.
83
,
5162
(
1999
).
20.
B. P.
Lanyon
,
J. D.
Whitfield
,
G. G.
Gillet
,
M. E.
Goggin
,
M. P.
Almeida
,
I.
Kassal
,
J. D.
Biamonte
,
M.
Mohseni
,
B. J.
Powell
,
M.
Barbieri
,
A.
Aspuru-Guzik
, and
A. G.
White
, “
Towards Quantum Chemistry on a Quantum Computer
,”
Nature Chem.
(in press).
21.
C.
Zalka
,
Proc. R. Soc. London, Ser. A
454
,
313
(
1998
).
22.
D. A.
Lidar
and
H.
Wang
,
Phys. Rev. E
59
,
2429
(
1999
).
23.
N. J.
Ward
,
I.
Kassal
, and
A.
Aspuru-Guzik
,
J. Chem. Phys.
130
,
194105
(
2009
).
24.
K. R.
Brown
,
R. J.
Clark
, and
I. L.
Chuang
,
Phys. Rev. Lett.
97
,
050504
(
2006
).
25.
R.
Fletcher
,
Practical Methods of Optimization
, 2nd ed. (
Wiley
,
New York
,
2000
).
26.
D.
Bulger
, e-print arXiv:quant-ph/0507193.
27.
D.
Bulger
,
J. Optim. Theory Appl.
133
,
289
(
2007
).
28.
W. P.
Baritompa
,
D.
Bulger
, and
G.
Wood
,
SIAM J. Optim.
15
,
1170
(
2005
).
29.
J.
Zhu
,
Z.
Huang
, and
S.
Kais
, e-print arXiv:0906.2375.
30.
C.
Dürr
and
P.
Høyer
, e-print arXiv:quant-ph/9607014.
You do not currently have access to this content.