We investigate the control of electronic energy transfer in molecular dimers through the preparation of specific vibrational coherences prior to electronic excitation, and its observation by nonlinear wave-packet interferometry (nl-WPI). Laser-driven coherent nuclear motion can affect the instantaneous resonance between site-excited electronic states and thereby influence short-time electronic excitation transfer (EET). We first illustrate this control mechanism with calculations on a dimer whose constituent monomers undergo harmonic vibrations. We then consider the use of nl-WPI experiments to monitor the nuclear dynamics accompanying EET in general dimer complexes following impulsive vibrational excitation by a subresonant control pulse (or control pulse sequence). In measurements of this kind, two pairs of polarized phase-related femtosecond pulses following the control pulse generate superpositions of coherent nuclear wave packets in optically accessible electronic states. Interference contributions to the time- and frequency-integrated fluorescence signals due to overlaps among the superposed wave packets provide amplitude-level information on the nuclear and electronic dynamics. We derive the basic expression for a control-pulse-dependent nl-WPI signal. The electronic transition moments of the constituent monomers are assumed to have a fixed relative orientation, while the overall orientation of the complex is distributed isotropically. We include the limiting case of coincident arrival by pulses within each phase-related pair in which control-influenced nl-WPI reduces to a fluorescence-detected pump-probe difference experiment. Numerical calculations of pump-probe signals based on these theoretical expressions are presented in the following paper [J. D. Biggs and J. A. Cina, J. Chem. Phys.131, 224302 (2009)].

1.
P. S.
Christopher
,
M.
Shapiro
, and
P.
Brumer
,
J. Chem. Phys.
125
,
124310
(
2006
).
2.
M.
Abe
,
Y.
Ohtsuki
,
Y.
Fujimura
, and
W.
Domcke
,
J. Chem. Phys.
123
,
144508
(
2005
).
3.
M.
Sugawara
,
S.
Yoshizawa
, and
S.
Yabushita
,
Chem. Phys. Lett.
350
,
253
(
2001
).
4.
T.
Buckup
,
J.
Hauer
,
J.
Möhring
, and
M.
Motzkus
,
Arch. Biochem. Biophys.
483
,
219
(
2009
).
5.
J.
Hauer
,
H.
Skenderovic
,
K. -L.
Kompa
, and
M.
Motzkus
,
Chem. Phys. Lett.
421
,
523
(
2006
).
6.
J. B.
Ballard
,
H. U.
Stauffer
,
Z.
Amitay
, and
S. R.
Leone
,
J. Chem. Phys.
116
,
1350
(
2002
).
7.
B.
Amstrup
and
N. E.
Henriksen
,
J. Chem. Phys.
97
,
8285
(
1992
).
8.
N.
Elghobashi
,
P.
Krause
,
J.
Manz
, and
M.
Oppel
,
Phys. Chem. Chem. Phys.
5
,
4806
(
2003
).
9.
L.
Dhar
,
J. A.
Rogers
, and
K. A.
Nelson
,
Chem. Rev. (Washington, D.C.)
94
,
157
(
1994
).
10.
A. M.
Walsh
and
R. A.
Loring
,
J. Chem. Phys.
93
,
7566
(
1990
).
11.
U.
Banin
,
A.
Bartana
,
S.
Ruhman
, and
R.
Kosloff
,
J. Chem. Phys.
101
,
8461
(
1994
).
12.
T. J.
Smith
and
J. A.
Cina
,
J. Chem. Phys.
104
,
1272
(
1996
).
13.
E. M.
Hiller
and
J. A.
Cina
,
J. Chem. Phys.
105
,
3419
(
1996
).
14.
C. J.
Bardeen
,
Q.
Wang
, and
C. V.
Shank
,
J. Phys. Chem. A
102
,
2759
(
1998
).
15.
D.
Gelman
and
R.
Kosloff
,
J. Chem. Phys.
123
,
234506
(
2005
).
16.
S.
Fujiyoshi
,
S.
Takeuchi
, and
T.
Tahara
,
J. Phys. Chem. A
107
,
494
(
2003
).
17.
S.
Fujiyoshi
,
S.
Takeuchi
, and
T.
Tahara
,
J. Phys. Chem. A
108
,
5938
(
2004
).
18.
A.
Kahan
,
O.
Nahmias
,
N.
Friedman
,
M.
Sheves
, and
S.
Ruhman
,
J. Am. Chem. Soc.
129
,
537
(
2007
).
19.
P. N.
Butcher
and
D.
Cotter
,
The Elements of Nonlinear Optics
(
Cambridge University Press
,
Cambridge
,
1991
).
20.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
21.
M.
Cho
,
Two-Dimensional Optical Spectroscopy
(
CRC
,
Boca Raton
,
2009
).
22.
An approach somewhat similar to ours is taken in a recent paper on the two-dimensional optical spectroscopy of molecular dimers;
J.
Seibt
,
K.
Renziehausen
,
D. V.
Voronine
, and
V.
Engel
,
J. Chem. Phys.
130
,
134318
(
2009
).
[PubMed]
23.
J. L.
Herek
,
W.
Wohlleben
,
R. J.
Cogdell
,
D.
Zeidler
, and
M.
Motzkus
,
Nature (London)
417
,
533
(
2002
).
24.
S. E.
Bradforth
,
R.
Jimenez
,
F.
van Mourik
,
R.
van Grondelle
, and
G. R.
Fleming
,
J. Phys. Chem.
99
,
16179
(
1995
).
25.
V.
Subramanian
and
D. G.
Evans
,
J. Phys. Chem. B
108
,
1085
(
2004
).
26.
T.
Renger
,
V.
May
, and
O.
Kühn
,
Phys. Rep.
343
,
137
(
2001
).
27.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T. K.
Ahn
,
T.
Mancal
,
Y. C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
446
,
782
(
2007
).
28.
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
434
,
625
(
2005
).
29.
M.
Cho
,
Bull. Korean Chem. Soc.
27
,
1940
(
2006
).
30.
J. A.
Cina
and
G. R.
Fleming
,
J. Phys. Chem. A
108
,
11196
(
2004
).
31.
D. S.
Kilin
,
O. V.
Prezhdo
, and
M.
Schreiber
,
J. Phys. Chem. A
111
,
10212
(
2007
).
32.
R.
Monshouwer
,
A.
Baltuska
,
F.
van Mourik
, and
R.
van Grondelle
,
J. Phys. Chem. A
102
,
4360
(
1998
).
33.
V.
Novoderezhkin
,
R.
Monshouwer
, and
R.
van Grondelle
,
J. Phys. Chem. B
104
,
12056
(
2000
).
34.
S.
Jang
,
Y. J.
Jung
, and
R. J.
Silbey
,
Chem. Phys.
275
,
319
(
2002
).
35.
J. D.
Biggs
and
J. A.
Cina
,
J. Chem. Phys.
131
,
224302
(
2009
).
37.
T. S.
Humble
and
J. A.
Cina
,
J. Phys. Chem. B
110
,
18879
(
2006
).
38.
T. S.
Humble
and
J. A.
Cina
,
Phys. Rev. Lett.
93
,
060402
(
2004
).
39.
J. A.
Cina
,
J. Chem. Phys.
113
,
9488
(
2000
).
40.
N. F.
Scherer
,
A.
Matro
,
L. D.
Ziegler
,
M.
Du
,
R. J.
Carlson
,
J. A.
Cina
, and
G. R.
Fleming
,
J. Chem. Phys.
96
,
4180
(
1992
).
41.
N. F.
Scherer
,
R. J.
Carlson
,
A.
Matro
,
M.
Du
,
A. J.
Ruggiero
,
V.
Romero-Rochín
,
J. A.
Cina
,
G. R.
Fleming
, and
S. A.
Rice
,
J. Chem. Phys.
95
,
1487
(
1991
).
42.
J. A.
Cina
,
D. S.
Kilin
, and
T. S.
Humble
,
J. Chem. Phys.
118
,
46
(
2003
).
43.
R.
Martínez-Galicia
and
V.
Romero-Rochín
,
J. Chem. Phys.
122
,
094101
(
2005
).
44.
S.
Ramos-Sánchez
and
V.
Romero-Rochín
,
J. Chem. Phys.
121
,
2117
(
2004
).
45.
P.
Kjellberg
,
B.
Brüggemann
, and
T.
Pullerits
,
Phys. Rev. B
74
,
024303
(
2006
).
46.
A.
Donoso
,
D.
Kohen
, and
C. C.
Martens
,
J. Chem. Phys.
112
,
7345
(
2000
).
47.
48.
D.
Egorova
,
M. F.
Gelin
, and
W.
Domcke
,
J. Chem. Phys.
126
,
074314
(
2007
).
49.
P. F.
Tekavec
,
T. R.
Dyke
, and
A. H.
Marcus
,
J. Chem. Phys.
125
,
194303
(
2006
).
50.
P. F.
Tekavec
,
G. A.
Lott
, and
A. H.
Marcus
,
J. Chem. Phys.
127
,
214307
(
2007
).
51.
H.
Katsuki
,
H.
Chiba
,
C.
Meier
,
B.
Girard
, and
K.
Ohmori
,
Phys. Rev. Lett.
102
,
103602
(
2009
).
53.
K.
Ohmori
,
H.
Katsuki
,
H.
Chiba
,
M.
Honda
,
Y.
Hagihara
,
K.
Fujiwara
,
Y.
Sato
, and
K.
Ueda
,
Phys. Rev. Lett.
96
,
093002
(
2006
).
54.
K.
Ohmori
,
Y.
Sato
,
E. E.
Nikitin
, and
S. A.
Rice
,
Phys. Rev. Lett.
91
,
243003
(
2003
).
55.
M. A.
Bouchene
,
C.
Nicole
, and
B.
Girard
,
J. Phys. B.
32
,
5167
(
1999
).
56.
Y.
Cao
,
L.
Zhang
,
Y.
Yang
,
Z.
Sun
, and
Z.
Wang
,
Chem. Phys. Lett.
442
,
53
(
2007
).
57.
J. C.
Vaughan
,
T.
Hornung
,
K. W.
Stone
, and
K. A.
Nelson
,
J. Phys. Chem. A
111
,
4873
(
2007
).
58.
M.
Fushitani
,
M.
Bargheer
,
M.
Gühr
,
H.
Ibrahim
, and
N.
Schwentner
,
J. Phys. B
41
,
074013
(
2008
).
60.
D.
Keusters
,
H. S.
Tan
, and
W. S.
Warren
,
J. Phys. Chem. A
103
,
10369
(
1999
).
61.
P.
Tian
,
D.
Keusters
,
Y.
Suzaki
, and
W. S.
Warren
,
Science
300
,
1553
(
2003
).
62.
C.
Li
,
W.
Wagner
,
M.
Ciocca
, and
W. S.
Warren
,
J. Chem. Phys.
126
,
164307
(
2007
).
63.
M. L.
Cowan
,
J. P.
Ogilvie
, and
R. J. D.
Miller
,
Chem. Phys. Lett.
386
,
184
(
2004
).
64.
T.
Brixner
,
T.
Mancal
,
I. V.
Stiopkin
, and
G. R.
Fleming
,
J. Chem. Phys.
121
,
4221
(
2004
).
65.
For present purposes this pulse should perhaps be regarded as preresonant with the 10 and 10 transitions so that effects of interactions with higher-lying electronic states that are absent from our model Hamiltonian can safely be neglected.
66.
A. M.
Weiner
,
D. E.
Leaird
,
G. P.
Wiederrecht
, and
K. A.
Nelson
,
Science
247
,
1317
(
1990
).
67.
M. M.
Wefers
,
H.
Kawashima
, and
K. A.
Nelson
,
J. Chem. Phys.
108
,
10248
(
1998
).
68.
The nuclear degrees of freedom governed by the Hn may comprise any number of molecular and environmental modes. The pure state |g|ψ0 may, in particular, describe the energy-transfer complex in thermal equilibrium with a surrounding medium at any temperature such that kBT is much smaller than the monomer electronic excitation energies. For an interesting discussion on this point in a larger context, see Refs. 69 and 70.
69.
S.
Popescu
,
A. J.
Short
, and
A.
Winter
,
Nat. Phys.
2
,
754
(
2006
).
70.
S.
Popescu
,
A. J.
Short
, and
A.
Winter
, e-print arXiv:quant-ph/0511225.
71.
This choice of observable differs from that of Ref. 42, where the population of the acceptor state |1 was monitored for an oriented complex. If the similarity in emission frequency from the two- and one-exciton states were to make discrimination between them difficult, the theoretical treatment would have to be modified to calculate the expected number of “stored photons,” Ψ(t)|(2|22|+|11|+|11|)|Ψ(t).
72.
Under stronger EET coupling, when the time scale for energy transfer may be less than or on the order of pulse durations, vibrational periods, or both, it can be advantageous to frame the treatment in terms of delocalized exciton states, rather than site states. See Ref. 29 and Sec. III.C of Ref. 30.
73.
In the analogous matrix elements for a 10 transition, eImeIm, and eI is the component of eI along m.
74.
|(D)ε is an exception, however. Because energy transfer during the pulse is presumed negligible, this amplitude involves a single ε0 excitation pathway.
75.
Another possibility would be to set eP, eA, and eB all parallel to each other and the delay time tAP equal to one-quarter of the vibrational period for the mode in question. In this case the ground nuclear state of the donor-excited electronic state is preferentially populated and excited-state nuclear motion is essentially quenched.
76.
See EPAPS supplementary material at http://dx.doi.org/10.1063/1.3257596 for Appendixes B and C of this document.
77.
J.
Hernando
,
E. M. H. P.
van Dijk
,
J. P.
Hoogenboom
,
J.
García-López
,
D. N.
Reinhoudt
,
M.
Crego-Calama
,
M.
García-Parajó
, and
N. F.
van Hulst
,
Phys. Rev. Lett.
97
,
216403
(
2006
).
78.
T. J.
Smith
,
L. W.
Ungar
, and
J. A.
Cina
,
J. Lumin.
58
,
66
(
1994
).
79.
A.
Migani
and
M.
Olivucci
, in
Conical Intersections: Electronic Structure, Dynamics, and Spectroscopy
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
Singapore
,
2004
), Chap. 6.
80.
D. A.
Farrow
,
W.
Qian
,
E. R.
Smith
,
A. A.
Ferro
, and
D. M.
Jonas
,
J. Chem. Phys.
128
,
144510
(
2008
).
81.
I.
Yamazaki
,
S.
Akimoto
,
T.
Yamazaki
,
S.
Sato
, and
Y.
Sakata
,
J. Phys. Chem. A
106
,
2122
(
2002
).
82.
I.
Yamazaki
,
S.
Akimoto
,
N.
Aratani
, and
A.
Osuka
,
Bull. Chem. Soc. Jpn.
77
,
1959
(
2004
).
83.
W. R.
Lambert
,
P. M.
Felker
,
J. A.
Syage
, and
A. H.
Zewail
,
J. Chem. Phys.
81
,
2195
(
1984
).
84.
V. M.
Cangelosi
,
A. C.
Sather
,
L. N.
Zakharov
,
O. B.
Berryman
, and
D. W.
Johnson
,
Inorg. Chem.
46
,
9278
(
2007
).
85.
For another example of calculations involving the orientational average of sixfold products of transition-dipole directions, see
A.
Tokmakoff
,
J. Chem. Phys.
105
,
13
(
1996
).

Supplementary Material

You do not currently have access to this content.