A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20μhartree per atom, for both molecular and periodic systems.

1.
M. C.
Strain
,
G. E.
Scuseria
, and
M. J.
Frisch
,
Science
271
,
51
(
1996
).
2.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory
, 1st ed. (
McGraw-Hill
,
New York
,
1989
).
3.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley
,
New York
,
2002
).
4.
M. D.
Towler
,
A.
Zupan
, and
M.
Causà
,
Comput. Phys. Commun.
98
,
181
(
1996
).
5.
K. N.
Kudin
and
G. E.
Scuseria
,
Phys. Rev. B
61
,
16440
(
2000
).
6.
A.
Redlack
and
J.
Grindlay
,
J. Phys. Chem. Solids
36
,
73
(
1975
).
7.
L. Z.
Stolarczyk
and
L.
Piela
,
Int. J. Quantum Chem.
22
,
911
(
1982
).
8.
9.
M.
Challacombe
,
C.
White
, and
M.
Head-Gordon
,
J. Chem. Phys.
107
,
10131
(
1997
).
10.
K. N.
Kudin
and
G. E.
Scuseria
,
J. Chem. Phys.
121
,
2886
(
2004
).
11.
C. J.
Tymczak
and
M.
Challacombe
,
J. Chem. Phys.
122
,
134102
(
2005
).
12.
C. A.
White
,
B. G.
Johnson
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
230
,
8
(
1994
).
13.
S.
Obara
and
A.
Saika
,
J. Chem. Phys.
84
,
3963
(
1986
).
14.
Y.
Shao
and
M.
Head-Gordon
,
Chem. Phys. Lett.
323
,
425
(
2000
).
15.
E. J.
Baerends
,
D. E.
Ellis
, and
P.
Ros
,
Chem. Phys.
2
,
41
(
1973
).
16.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
17.
O.
Vahtras
,
J.
Almöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
18.
H. A.
Früchtl
,
R. A.
Kendall
,
R. J.
Harrison
, and
K. G.
Dyall
,
Int. J. Quantum Chem.
64
,
63
(
1997
).
19.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
20.
D. E.
Bernholdt
and
R. J.
Harrison
,
Chem. Phys. Lett.
250
,
477
(
1996
).
21.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
242
,
652
(
1995
).
22.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
,
Theor. Chem. Acc.
97
,
119
(
1997
).
23.
A. F.
Izmaylov
and
G. E.
Scuseria
,
Phys. Chem. Chem. Phys.
10
,
3421
(
2008
).
24.
A. P.
Rendell
and
T. J.
Lee
,
J. Chem. Phys.
101
,
400
(
1994
).
25.
M.
Sierka
,
A.
Hogekamp
, and
R.
Ahlrichs
,
J. Chem. Phys.
118
,
9136
(
2003
).
26.
A.
Sodt
,
J. E.
Subotnik
, and
M.
Head-Gordon
,
J. Chem. Phys.
125
,
194109
(
2006
).
27.
Y.
Jung
,
A.
Sodt
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6692
(
2005
).
28.
29.
G.
te Velde
and
E. J.
Baerends
,
Phys. Rev. B
44
,
7888
(
1991
).
30.
Š.
Varga
,
J. Chem. Phys.
127
,
114108
(
2007
).
31.
J. E.
Jaffe
and
A. C.
Hess
,
J. Chem. Phys.
105
,
10983
(
1996
).
32.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1992
.
33.
Š.
Varga
,
Int. J. Quantum Chem.
108
,
1518
(
2008
).
34.
Š.
Varga
,
M.
Milko
, and
J.
Noga
,
J. Chem. Phys.
124
,
034106
(
2006
).
35.
L.
Maschio
,
D.
Usvyat
,
F. R.
Manby
,
S.
Casassa
,
C.
Pisani
, and
M.
Schütz
,
Phys. Rev. B
76
,
075101
(
2007
).
36.
D.
Usvyat
,
L.
Maschio
,
F. R.
Manby
,
S.
Casassa
,
M.
Schütz
, and
C.
Pisani
,
Phys. Rev. B
76
,
075102
(
2007
).
37.
C.
Pisani
,
L.
Maschio
,
S.
Casassa
,
M.
Halo
,
M.
Schütz
, and
D.
Usvyat
,
J. Comput. Chem.
29
,
2113
(
2008
).
38.
L.
Maschio
and
D.
Usvyat
,
Phys. Rev. B
78
,
073102
(
2008
).
39.
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
6
,
5119
(
2004
).
40.
TURBOMOLE, Version 6.0 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH,
1989
2007
, TURBOMOLE GmbH, since
2007
; available from http://www.turbomole.com.
41.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
43.
K. N.
Kudin
and
G. E.
Scuseria
,
Chem. Phys. Lett.
289
,
611
(
1998
).
44.
K. N.
Kudin
and
G. E.
Scuseria
,
Chem. Phys. Lett.
283
,
61
(
1998
).
45.
F. R.
Manby
and
P. J.
Knowles
,
Phys. Rev. Lett.
87
,
163001
(
2001
).
46.
F. R.
Manby
,
P. J.
Knowles
, and
A. W.
Lloyd
,
J. Chem. Phys.
115
,
9144
(
2001
).
47.
G.
Lippert
,
J.
Hutter
, and
M.
Parrinello
,
Mol. Phys.
92
,
477
(
1997
).
48.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
49.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
50.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
51.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
52.
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
1057
(
2006
).
53.
See EPAPS supplementary material http://dx.doi.org/10.1063/1.3267858 for Coulomb energies and detailed information about basis sets and structures.
54.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
55.
G. J.
Martyna
and
M. E.
Tuckerman
,
J. Chem. Phys.
110
,
2810
(
1999
).

Supplementary Material

You do not currently have access to this content.