We present design of novel low-power homonuclear dipolar recoupling experiments for magic-angle-spinning solid-state NMR studies of proteins. The pulse sequences are developed by combining principles of symmetry-based dipolar recoupling and optimal control-based pulse sequence design. The scaffold of the pulse sequences is formed by known CN-type recoupling sequences, while the intrinsic sequence elements are designed using optimal control. This procedure allows for the development of high-performance pulse sequences demanding significantly weaker rf fields than previous symmetry-based pulse sequences while compensating for rf inhomogeneity and providing excitation over relevant ranges of chemical shifts for biological applications. The new recoupling experiments, referred to as optimal control CN(COCN), are demonstrated numerically and experimentally by two-dimensional (2D) C13C13 and three-dimensional (3D) N15C13C13 chemical shift correlation experiments on uniformly C13, N15-labeled ubiquitin. Exploiting the double-quantum, band-selective dipolar recoupling properties of the COCN experiments, we demonstrate significant sensitivity enhancement for 2D and 3D correlation spectra showing exclusively one- or two-bond correlations.

1.
U.
Haeberlen
and
J. S.
Waugh
,
Phys. Rev.
175
,
453
(
1968
);
T. S.
Untidt
and
N. C.
Nielsen
,
Phys. Rev. E
65
, (
2002
);
M.
Hohwy
and
N. C.
Nielsen
,
J. Chem. Phys.
109
,
3780
(
1998
);
D.
Siminovitch
,
T.
Untidt
, and
N. C.
Nielsen
,
J. Chem. Phys.
120
,
51
(
2004
).
[PubMed]
2.
J.
Schaefer
,
R. A.
Mckay
, and
E. O.
Stejskal
,
J. Magn. Reson.
34
,
443
(
1979
);
T.
Gullion
and
J.
Schaefer
,
J. Magn. Reson.
81
,
196
(
1989
);
R.
Tycko
and
G.
Dabbagh
,
Chem. Phys. Lett.
173
,
461
(
1990
);
A. E.
Bennett
,
C. M.
Rienstra
,
J. M.
Griffiths
,
W. G.
Zhen
,
P. T.
Lansbury
, and
R. G.
Griffin
,
J. Chem. Phys.
108
,
9463
(
1998
);
M.
Bjerring
,
J. T.
Rasmussen
,
R. S.
Krogshave
, and
N. C.
Nielsen
,
J. Chem. Phys.
119
,
8916
(
2003
);
M.
Bjerring
and
N. C.
Nielsen
,
Chem. Phys. Lett.
370
,
496
(
2003
);
M. H.
Levitt
,
J. Chem. Phys.
128
, (
2008
).
3.
N. C.
Nielsen
,
H.
Bildsoe
,
H. J.
Jakobsen
, and
M. H.
Levitt
,
J. Chem. Phys.
101
,
1805
(
1994
).
4.
Y. K.
Lee
,
N. D.
Kurur
,
M.
Helmle
,
O. G.
Johannessen
,
N. C.
Nielsen
, and
M. H.
Levitt
,
Chem. Phys. Lett.
242
,
304
(
1995
).
5.
M.
Hohwy
,
H. J.
Jakobsen
,
M.
Eden
,
M. H.
Levitt
, and
N. C.
Nielsen
,
J. Chem. Phys.
108
,
2686
(
1998
).
6.
A.
Brinkmann
,
M.
Eden
, and
M. H.
Levitt
,
J. Chem. Phys.
112
,
8539
(
2000
).
7.
M.
Carravetta
,
M.
Eden
,
X.
Zhao
,
A.
Brinkmann
, and
M. H.
Levitt
,
Chem. Phys. Lett.
321
,
205
(
2000
).
8.
M.
Baldus
,
D. G.
Geurts
,
S.
Hediger
, and
B. H.
Meier
,
J. Magn. Reson., Ser. A
118
,
140
(
1996
).
9.
F.
Castellani
,
B.
van Rossum
,
A.
Diehl
,
M.
Schubert
,
K.
Rehbein
, and
H.
Oschkinat
,
Nature (London)
420
,
98
(
2002
);
S. G.
Zech
,
A. J.
Wand
, and
A. E.
McDermott
,
J. Am. Chem. Soc.
127
,
8618
(
2005
);
[PubMed]
K.
Varga
,
L.
Tian
, and
A. E.
McDermott
,
Biochim. Biophys. Acta
1774
,
1604
(
2007
).
[PubMed]
10.
Y.
Li
,
D. A.
Berthold
,
R. B.
Gennis
, and
C. M.
Rienstra
,
Protein Sci.
17
,
199
(
2008
).
11.
N. M.
Szeverenyi
,
M. J.
Sullivan
, and
G. E.
Maciel
,
J. Magn. Reson.
47
,
462
(
1982
).
12.
K.
Takegoshi
,
S.
Nakamura
, and
T.
Terao
,
Chem. Phys. Lett.
344
,
631
(
2001
);
C. R.
Morcombe
,
V.
Gaponenko
,
R. A.
Byrd
, and
K. W.
Zilm
,
J. Am. Chem. Soc.
126
,
7196
(
2004
).
[PubMed]
13.
K.
Takegoshi
,
S.
Nakamura
, and
T.
Terao
,
J. Chem. Phys.
118
,
2325
(
2003
).
14.
L. S.
Pontryagin
,
V. G.
Boltyanskii
,
R. V.
Gamkrelidze
, and
E. F.
Mischenko
,
The Mathematical Theory of Optimal Processes
(
Wiley-Interscience
,
New York
,
1962
);
A. E.
Bryson
and
Y. -C.
Ho
,
Applied Optimal Control: Optimization, Estimation, and Control
, Revised printing edition (
Hemisphere
,
Washington
,
1975
).
15.
C. T.
Kehlet
,
A. C.
Sivertsen
,
M.
Bjerring
,
T. O.
Reiss
,
N.
Khaneja
,
S. J.
Glaser
, and
N. C.
Nielsen
,
J. Am. Chem. Soc.
126
,
10202
(
2004
).
16.
C.
Kehlet
,
T.
Vosegaard
,
N.
Khaneja
,
S. J.
Glaser
, and
N. C.
Nielsen
,
Chem. Phys. Lett.
414
,
204
(
2005
);
J. O.
Hansen
,
C.
Kehlet
,
M.
Bjerring
,
T.
Vosegaard
,
S. J.
Glaser
,
N.
Khaneja
, and
N. C.
Nielsen
,
Chem. Phys. Lett.
447
,
154
(
2007
).
17.
C.
Kehlet
,
M.
Bjerring
,
A. C.
Sivertsen
,
T.
Kristensen
,
J. J.
Enghild
,
S. J.
Glaser
,
N.
Khaneja
, and
N. C.
Nielsen
,
J. Magn. Reson.
188
,
216
(
2007
).
18.
Z.
Tosner
,
S. J.
Glaser
,
N.
Khaneja
, and
N. C.
Nielsen
,
J. Chem. Phys.
125
, (
2006
).
19.
I. I.
Maximov
,
Z.
Tosner
, and
N. C.
Nielsen
,
J. Chem. Phys.
128
,
184505
(
2008
).
20.
A.
Brinkmann
and
M. H.
Levitt
,
J. Chem. Phys.
115
,
357
(
2001
).
21.
M.
Bak
,
J. T.
Rasmussen
, and
N. C.
Nielsen
,
J. Magn. Reson.
147
,
296
(
2000
).
22.
N.
Khaneja
,
T.
Reiss
,
C.
Kehlet
,
T.
Schulte-Herbruggen
, and
S. J.
Glaser
,
J. Magn. Reson.
172
,
296
(
2005
).
23.
T.
Vosegaard
,
A.
Malmendal
, and
N. C.
Nielsen
,
Monatsch. Chem.
133
,
1555
(
2002
);
A. C.
Sivertsen
,
M.
Bjerring
,
C. T.
Kehlet
,
T.
Vosegaard
,
N. C.
Nielsen
, and
G. A.
Webb
,
Annu. Rep. NMR Spectrosc.
54
,
243
(
2004
);
N. C.
Nielsen
, in
NMR Spectroscopy of Biological Solids
, edited by
A.
Ramamoorthy
(
CRC
,
Boca Raton, FL
/
Taylor & Francis
,
New York
,
2006
), p.
261
.
24.
Z.
Tosner
,
T.
Vosegaard
,
C.
Kehlet
,
N.
Khaneja
,
S. J.
Glaser
, and
N. C.
Nielsen
,
J. Magn. Reson.
197
,
120
(
2009
).
25.
M.
Bak
,
R.
Schultz
,
T.
Vosegaard
, and
N. C.
Nielsen
,
J. Magn. Reson.
154
,
28
(
2002
).
26.
M.
Bak
and
N. C.
Nielsen
,
J. Magn. Reson.
125
,
132
(
1997
).
27.
B. M.
Fung
,
A. K.
Khitrin
, and
K.
Ermolaev
,
J. Magn. Reson.
142
,
97
(
2000
).
28.
See EPAPS Document No. http://dx.doi.org/10.1063/1.3157737 for rf amplitudes and phases of the optimal control pulse sequences. For information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
29.
M.
Hohwy
,
C. M.
Rienstra
,
C. P.
Jaroniec
, and
R. G.
Griffin
,
J. Chem. Phys.
110
,
7983
(
1999
).
30.
M.
Hohwy
,
C. M.
Rienstra
, and
R. G.
Griffin
,
J. Chem. Phys.
117
,
4973
(
2002
).
31.
D. H. H.
Zhou
,
K. D.
Kloepper
,
K. A.
Winter
, and
C. M.
Rienstra
,
J. Biomol. NMR
34
,
245
(
2006
).
32.
R.
Verel
,
M.
Baldus
,
M.
Ernst
, and
B. H.
Meier
,
Chem. Phys. Lett.
287
,
421
(
1998
).
33.
G.
De Paepe
,
J. R.
Lewandowski
, and
R. G.
Griffin
,
J. Chem. Phys.
128
, (
2008
).
34.
M. J.
Bayro
,
R.
Ramachandran
,
M. A.
Caporini
,
M. T.
Eddy
, and
R. G.
Griffin
,
J. Chem. Phys.
128
, (
2008
).
35.
T. I.
Igumenova
,
A. E.
McDermott
,
K. W.
Zilm
,
R. W.
Martin
,
E. K.
Paulson
, and
A. J.
Wand
,
J. Am. Chem. Soc.
126
,
6720
(
2004
).
36.
K.
Seidel
,
M.
Etzkorn
,
H.
Heise
,
S.
Becker
, and
M.
Baldus
,
ChemBioChem
6
,
1638
(
2005
).
37.
E. L.
Ulrich
,
H.
Akutsu
,
J. F.
Doreleijers
,
Y.
Harano
,
Y. E.
Ioannidis
,
J.
Lin
,
M.
Livny
,
S.
Mading
,
D.
Maziuk
,
Z.
Miller
,
E.
Nakatani
,
C. F.
Schulte
,
D. E.
Tolmie
,
R.
Kent Wenger
,
H.
Yao
, and
J. L.
Markley
,
Nucleic Acids Res.
36
(Database issue),
D402
(
2008
).
38.
W. T.
Franks
,
K. D.
Kloepper
,
B. J.
Wylie
, and
C. M.
Rienstra
,
J. Biomol. NMR
39
,
107
(
2007
).

Supplementary Material

You do not currently have access to this content.