Numerous studies have identified large quantum mechanical effects in the dynamics of liquid water. In this paper, we suggest that these effects may have been overestimated due to the use of rigid water models and flexible models in which the intramolecular interactions were described using simple harmonic functions. To demonstrate this, we introduce a new simple point charge model for liquid water, q-TIP4P/F, in which the O–H stretches are described by Morse-type functions. We have parametrized this model to give the correct liquid structure, diffusion coefficient, and infrared absorption frequencies in quantum (path integral-based) simulations. The model also reproduces the experimental temperature variation of the liquid density and affords reasonable agreement with the experimental melting temperature of hexagonal ice at atmospheric pressure. By comparing classical and quantum simulations of the liquid, we find that quantum mechanical fluctuations increase the rates of translational diffusion and orientational relaxation in our model by a factor of around 1.15. This effect is much smaller than that observed in all previous simulations of empirical water models, which have found a quantum effect of at least 1.4 regardless of the quantum simulation method or the water model employed. The small quantum effect in our model is a result of two competing phenomena. Intermolecular zero point energy and tunneling effects destabilize the hydrogen-bonding network, leading to a less viscous liquid with a larger diffusion coefficient. However, this is offset by intramolecular zero point motion, which changes the average water monomer geometry resulting in a larger dipole moment, stronger intermolecular interactions, and a slower diffusion. We end by suggesting, on the basis of simulations of other potential energy models, that the small quantum effect we find in the diffusion coefficient is associated with the ability of our model to produce a single broad O–H stretching band in the infrared absorption spectrum.

1.
F. H.
Stillinger
,
Adv. Chem. Phys.
31
,
1
(
1975
).
2.
R. A.
Kuharski
and
P. J.
Rossky
,
J. Chem. Phys.
82
,
5164
(
1985
).
3.
A.
Wallqvist
and
B. J.
Berne
,
Chem. Phys. Lett.
117
,
214
(
1985
).
4.
F.
Paesani
and
G. A.
Voth
,
J. Phys. Chem. B
113
,
5702
(
2009
).
5.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
).
6.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2371
(
1999
).
7.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
121
,
3368
(
2004
).
8.
B. J.
Braams
and
D. E.
Manolopoulos
,
J. Chem. Phys.
125
,
124105
(
2006
).
9.
J.
Lobaugh
and
G. A.
Voth
,
J. Chem. Phys.
106
,
2400
(
1997
).
10.
L.
Hernández de la Peña
and
P. G.
Kusalik
,
J. Chem. Phys.
121
,
5992
(
2004
).
11.
T. F.
Miller
 III
and
D. E.
Manolopoulos
,
J. Chem. Phys.
123
,
154504
(
2005
).
12.
L.
Hernández de la Peña
and
P. G.
Kusalik
,
J. Chem. Phys.
125
,
054512
(
2006
).
13.
F.
Paesani
,
W.
Zhang
,
D. A.
Case
,
T. E.
Cheatham
 III
, and
G. A.
Voth
,
J. Chem. Phys.
125
,
184507
(
2006
).
14.
F.
Paesani
,
S.
Iuchi
, and
G. A.
Voth
,
J. Chem. Phys.
127
,
074506
(
2007
).
15.
B.
Guillot
and
Y.
Guissani
,
J. Chem. Phys.
108
,
10162
(
1998
).
16.
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6709
(
2005
).
17.
J. -L.
Barrat
and
I. R.
McDonald
,
Mol. Phys.
70
,
535
(
1990
).
18.
A.
Wallqvist
and
O.
Teleman
,
Mol. Phys.
74
,
515
(
1991
).
19.
D. E.
Smith
and
A. D. J.
Haymet
,
J. Chem. Phys.
96
,
8450
(
1992
).
20.
G.
Raabe
and
R. J.
Sadus
,
J. Chem. Phys.
126
,
044701
(
2007
).
21.
J.
Lopez-Lemus
,
G. A.
Chapela
, and
J.
Alejandre
,
J. Chem. Phys.
128
,
174703
(
2008
).
22.
T. M.
Chang
and
L. X.
Dang
,
Chem. Rev. (Washington, D.C.)
106
,
1305
(
2006
).
23.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
24.
K.
Watanabe
and
M. L.
Klein
,
Chem. Phys.
131
,
157
(
1989
).
25.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
26.
M.
Parrinello
and
A.
Rahman
,
J. Chem. Phys.
80
,
860
(
1984
).
27.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
28.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
29.
T.
Bryk
and
A. D. J.
Haymet
,
J. Chem. Phys.
117
,
10258
(
2002
).
30.
R.
García Fernández
,
J. L. F.
Abascal
, and
C.
Vega
,
J. Chem. Phys.
124
,
144506
(
2006
).
31.
A.
Hayward
and
J. R.
Reimers
,
J. Chem. Phys.
106
,
1518
(
1997
).
32.
V.
Buch
,
P.
Sandler
, and
J.
Sadlej
,
J. Phys. Chem. B
102
,
8641
(
1998
).
33.
J. D.
Bernal
and
R. H.
Fowler
,
J. Chem. Phys.
1
,
515
(
1933
).
34.
V. F.
Petrenko
and
R. W.
Whitworth
,
Physics of Ice
(
Clarendon
,
Oxford
,
1999
).
35.
H.
Nada
and
Y.
Furukawa
,
J. Cryst. Growth
283
,
242
(
2005
).
36.
T. F.
Miller
 III
and
D. E.
Manolopoulos
,
J. Chem. Phys.
122
,
184503
(
2005
).
37.
T. E.
Markland
and
D. E.
Manolopoulos
,
J. Chem. Phys.
129
,
024105
(
2008
).
38.
S.
Habershon
,
G. S.
Fanourgakis
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
129
,
074501
(
2008
).
39.
T. D.
Hone
,
P. J.
Rossky
, and
G. A.
Voth
,
J. Chem. Phys.
124
,
154103
(
2006
).
40.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science
,
Sausalito
,
2000
).
41.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
Oxford
,
2001
).
42.
R.
Kubo
,
J. Phys. Soc. Jpn.
12
,
570
(
1957
).
43.
R.
Kubo
,
M.
Toda
, and
N.
Hashitsume
,
Statistical Physics II: Nonequilibrium Statistical Mechanics
(
Springer
,
New York
,
1985
).
44.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic
,
San Diego
,
2002
).
45.
T. E.
Markland
and
D. E.
Manolopoulos
,
Chem. Phys. Lett.
464
,
256
(
2008
).
46.
S. L.
Carnie
and
G. N.
Patey
,
Mol. Phys.
47
,
1129
(
1982
).
47.
J. L. F.
Abascal
and
C.
Vega
,
Phys. Chem. Chem. Phys.
9
,
2775
(
2007
).
49.
P.
Paricaud
,
M.
Předota
,
A. A.
Chialvo
, and
P. T.
Cummings
,
J. Chem. Phys.
122
,
244511
(
2005
).
50.
D.
Paschek
,
J. Chem. Phys.
120
,
6674
(
2004
).
51.
C.
Vega
,
E.
Sanz
, and
J. L. F.
Abascal
,
J. Chem. Phys.
122
,
114507
(
2005
).
52.
C.
Vega
and
J. L. F.
Abascal
,
J. Chem. Phys.
123
,
144504
(
2005
).
53.
E. R.
Batista
,
S. S.
Xantheas
, and
H.
Jönsson
,
J. Chem. Phys.
109
,
4546
(
1998
).
54.
E. R.
Batista
,
S. S.
Xantheas
, and
H.
Jönsson
,
J. Chem. Phys.
111
,
6011
(
1999
).
55.
W. S.
Price
,
H.
Ide
, and
Y.
Arata
,
J. Phys. Chem. A
103
,
448
(
1999
).
56.
W. S.
Price
,
H.
Ide
, and
Y.
Arata
,
J. Phys. Chem. B
104
,
5874
(
2000
).
57.
B.
Dünweg
and
K.
Kremer
,
J. Chem. Phys.
99
,
6983
(
1993
).
58.
I. -C.
Yeh
and
G.
Hummer
,
J. Phys. Chem. B
108
,
15873
(
2004
).
59.
H. S.
Tan
,
I. R.
Piletic
, and
M. D.
Fayer
,
J. Chem. Phys.
122
,
174501
(
2005
).
60.
Y. L. A.
Rezus
and
H. J.
Bakker
,
J. Chem. Phys.
123
,
114502
(
2005
).
61.
C. P.
Lawrence
and
J. L.
Skinner
,
J. Chem. Phys.
118
,
264
(
2003
).
62.
R.
Winkler
,
J.
Lindner
,
H.
Bürsing
, and
P.
Vöhringer
,
J. Chem. Phys.
113
,
4674
(
2000
).
63.
J. E.
Bertie
and
Z.
Lan
,
Appl. Spectrosc.
50
,
1047
(
1996
).
64.
R. W.
Impey
,
P. A.
Madden
, and
I. R.
McDonald
,
Mol. Phys.
46
,
513
(
1982
).
65.
J. E.
Bertie
,
M. K.
Ahmed
, and
H. H.
Eysel
,
J. Phys. Chem.
93
,
2210
(
1989
).
66.
B.
Chen
,
I.
Ivanov
,
M. L.
Klein
, and
M.
Parrinello
,
Phys. Rev. Lett.
91
,
215503
(
2003
).
67.
A. K.
Soper
and
C. J.
Benmore
,
Phys. Rev. Lett.
101
,
065502
(
2008
).
68.
J. -P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
69.
H. C.
Andersen
,
J. Comput. Phys.
52
,
24
(
1983
).
70.
G. S.
Fanourgakis
and
S. S.
Xantheas
,
J. Phys. Chem. A
110
,
4100
(
2006
).
72.
C. J.
Burnham
,
J. C.
Li
,
S. S.
Xantheas
, and
M.
Leslie
,
J. Chem. Phys.
110
,
4566
(
1999
).
73.
C. J.
Burnham
and
S. S.
Xantheas
,
J. Chem. Phys.
116
,
5115
(
2002
).
74.
C. J.
Burnham
,
G. F.
Reiter
,
J.
Mayers
,
T.
Abdul-Redah
,
H.
Reichert
, and
H.
Dosch
,
Phys. Chem. Chem. Phys.
8
,
3966
(
2006
).
75.
G. S.
Fanourgakis
and
S. S.
Xantheas
,
J. Chem. Phys.
128
,
074506
(
2008
).
76.
G. S.
Fanourgakis
, private communication.
77.
A.
Saul
and
W.
Wagner
,
J. Phys. Chem. Ref. Data
18
,
1537
(
1989
).
78.
Handbook of Chemistry and Physics
, 58th ed., edited by
R. C.
Weast
(
CRC
,
Cleveland
,
1977
).
You do not currently have access to this content.