The reaction of N2O (known to be an O atom donor under several conditions) with the phenyl cation is studied by experimental and theoretical methods. Phenyl cation (or phenylium), C6H5+, and its perdeuterated derivative C6D5+ are produced either by electron impact or by atmospheric pressure chemical ionization of adequate neutral precursors, and product mass spectra are measured in a guided ion beam tandem mass spectrometer. The ions C5(H,D)5+, C6(H,D)5O+, and C3(H,D)3+ are experimentally detected as the most relevant reaction products. In addition, the detection of the adduct (C6H5N2O)+, which is collisionally stabilized in the scattering cell of the mass spectrometer, is reported here for the first time. The reaction pathways, which could bring about the formation of the mentioned ions, are then explored extensively by density functional theory and, for the more promising pathways, by CASPT2/CASSCF calculations. The two reacting species (1) form initially a phenoxydiazonium adduct, C6H5ON2+ (2a), by involving the empty in-plane hybrid C orbital of phenylium. The alternative attack to the ring π system to produce an epoxidic adduct 2c is ruled out on the basis of the energetics. Then, 2a loses N2 quite easily, thus affording the phenoxyl cation 3. This is only the first of several C6H5O+ isomers (4–6 and 8–12), which can stem from 3 upon different cleavages and formations of C–C bond and/or H shifts. As regards the formation of C5H5+, among several conceivable pathways, a direct CO extrusion from 3 is discarded, while others appear to be viable to different extents, depending on the initial energy of the system. The easiest CO loss is from 4, with formation of the cyclopentadienyl cation 7. Formation of C3H3+ is generally hindered and its detection depends again on the availability of some extra initial energy.

1.
Y. L.
Ren
,
L.
Wang
, and
X. W.
Zhang
,
Prog. Chem.
15
,
420
(
2003
).
2.
M.
Tada
,
R.
Bal
,
T.
Sasaki
,
Y.
Uemura
,
Y.
Inada
,
S.
Tanaka
,
M.
Nomura
, and
Y.
Iwasawa
,
J. Phys. Chem. C
111
,
10085
(
2007
).
3.
M.
Iwamoto
,
K.
Matsukami
, and
S.
Kagawa
,
J. Phys. Chem.
87
,
903
(
1983
).
4.
V. N.
Parmon
,
G. I.
Panov
,
A.
Uriarte
, and
A. S.
Noskov
,
Catal. Today
100
,
115
(
2005
) (and references therein).
5.
N. R.
Shiju
,
S.
Fiddy
,
O.
Sonntag
,
M.
Stockenhuber
, and
G.
Sankar
,
Chem. Commun. (Cambridge)
2006
,
4955
(and references therein).
6.
T.
Ren
,
L.
Yan
,
X.
Zhang
, and
J.
Suo
Appl. Catal., A
244
,
11
(
2003
).
7.
A. A.
Ivanov
,
V. S.
Chernyavsky
,
M. J.
Gross
,
A. S.
Kharitonov
,
A. K.
Uriarte
, and
G. I.
Panov
App. Catal., A
249
,
327
(
2003
).
8.
M. H.
Sayyar
and
R. J.
Wakeman
,
Chem. Eng. Res. Des.
86
,
517
(
2008
).
9.
K.
Sun
,
H.
Xia
,
Z.
Feng
,
R.
van Santen
,
E.
Hensen
, and
C.
Li
,
J. Catal.
254
,
383
(
2008
).
10.
Y.
Li
,
H.
Xia
,
F.
Fan
,
Z.
Feng
,
R.
van Santen
,
E. J. M.
Hensen
, and
C.
Li
,
Chem. Commun. (Cambridge)
2008
,
774
.
11.
D.
Ascenzi
,
P.
Franceschi
,
G.
Guella
, and
P.
Tosi
,
J. Phys. Chem.
110
,
7841
(
2006
) (and references therein).
12.
S.
Suzuki
,
H.
Sekiguchi
, and
K.
Takaki
,
J. Chem. Eng. Jpn.
40
,
749
(
2007
).
13.
The existence of the phenyl cation was hypothesized many years ago by
W. A.
Waters
,
J. Chem. Soc.
1942
,
266
;
then studied in the gas phase by
M.
Speranza
,
Chem. Rev. (Washington, D.C.)
93
,
2933
(
1993
);
D.
Schroder
,
K.
Schroeter
,
W.
Zummack
,
H.
Schwarz
,
J. Am. Soc. Mass Spectrom.
10
,
878
(
1999
);
and theoretically by
A.
Nicolaides
,
D. M.
Smith
,
F.
Jensen
, and
L.
Radom
,
J. Am. Chem. Soc.
119
,
8083
(
1997
);
J. N.
Harvey
,
M.
Aschi
,
H.
Schwarz
,
W.
Koch
,
Theor. Chem. Acc.
99
,
95
(
1998
)
More recently, it was detected in a solid Ar matrix at 8 K by
M.
Winkler
and
W.
Sander
,
Angew. Chem., Int. Ed.
39
,
2014
(
2000
)
Its solution chemistry, since its first generation
Y.
Himeshima
,
H.
Kobayashi
, and
T.
Sonoda
,
J. Am. Chem. Soc.
107
,
5286
(
1985)
continues to be explored;
see, for instance
V.
Dichiarante
and
M.
Fagnoni
,
SynLett
6
,
787
(
2008
);
V.
Dichiarante
,
M.
Fagnoni
,
M.
Mella
, and
A.
Albini
,
Chem.-Eur. J.
12
,
3905
(
2006
).
14.
Y. A.
Ranasinghe
and
G. L.
Glish
,
J. Am. Soc. Mass Spectrom.
7
,
473
(
1996
).
15.
Among the vast literature on VOC remediation by plasma techniques, some of the most recent papers are
A. M.
Harling
,
D. J.
Glover
,
J. C.
Whitehead
, and
K.
Zhang
,
Environ. Sci. Technol.
42
,
4546
(
2008
);
[PubMed]
E.
Marotta
,
A.
Callea
,
X.
Ren
,
M.
Rea
, and
C.
Paradisi
,
Plasma Processes Polym.
5
,
146
(
2008
);
B.
Lu
,
M.
Ji
,
M.
Wang
, and
J.
,
J. Mater. Eng. Perform.
17
,
428
(
2008
);
R.
Morent
,
C.
Leys
,
J.
Dewulf
,
D.
Neirynck
,
J.
Van Durme
, and
H.
van Langenhove
,
J. Adv. Oxid. Technol.
10
,
127
(
2007
).
16.
A.
Ogata
,
N.
Shintani
,
K.
Yamanouchi
,
K.
Mizuno
,
S.
Kushiyama
, and
T.
Yamamoto
,
Plasma Chem. Plasma Process.
20
,
453
(
2000
);
A.
Ogata
,
K.
Miyamae
,
K.
Mizuno
,
S.
Kushiyama
, and
M.
Tezuka
,
Plasma Chem. Plasma Process.
22
,
537
(
2002
);
A.
Ogata
,
H.
Einaga
,
H.
Kabashima
,
S.
Futamura
,
S.
Kushiyama
, and
H. H.
Kim
,
Appl. Catal., B
46
,
87
(
2003
).
17.
Nitrous oxide is also an important greenhouse gas whose concentration is presently increasing at a rate of 0.25% per year. See, for instance,
J.
Flückiger
,
A.
Dällenbach
,
T.
Blunier
,
B.
Stauffer
,
T. F.
Stocker
,
D.
Raynaud
, and
J. -M.
Barnola
,
Science
285
,
227
(
1999
). It is also known to contribute to stratospheric ozone depletion (see Ref. 19).
18.
Though its chemistry can be rather diverse, see, for instance,
S. R.
Kass
,
J.
Filley
,
J. M.
van Doren
, and
C. H.
DePuy
,
J. Am. Chem. Soc.
108
,
2849
(
1986
);
S.
Poh
,
R.
Hernandez
,
M.
Inagaki
, and
P. G.
Jessop
,
Org. Lett.
1
,
583
(
1999
).
19.
L.
Date
,
K.
Radouane
,
H.
Caquineau
,
B.
Despax
,
J. P.
Courdec
, and
M.
Yousfi
,
Surf. Coat. Technol.
116–119
,
1042
(
1999
); in this study, N2O dissociation under rf discharges in a plasma reactor is investigated, and concentrations of approximately 1013 and 107moleculescm3 for O(P3) and O(D1), respectively, are assessed;
see also
X.
Hu
,
J.
Nicholas
,
J. -J.
Zhang
,
T. M.
Linjewile
,
P.
de Filippis
, and
P. K.
Agarwal
,
Fuel
81
,
1259
(
2002
).
20.
S. K.
Ross
,
J. W.
Sutherland
,
S. -C.
Kuo
, and
R. B.
Klemm
,
J. Phys. Chem. A
101
,
1104
(
1997
) (and references therein).
21.
D. -Y.
Hwuang
and
A. M.
Mebel
,
Chem. Phys. Lett.
259
,
89
(
2000
).
22.
C.
Vinckier
,
J.
Helaers
, and
J.
Remeysen
,
J. Phys. Chem. A
103
,
5328
(
1999
).
23.
See for instance:
A.
Stirling
,
J. Am. Chem. Soc.
124
,
4058
(
2002
);
[PubMed]
A.
Stirling
,
J. Phys. Chem. A
102
,
6565
(
1998
).
24.
See, for instance,
J. M. C.
Plane
,
T.
Vondrak
,
S.
Broadley
,
B.
Cosic
,
A.
Ermoline
, and
A.
Fontijn
,
J. Phys. Chem.
110
,
7874
(
2006
);
X. Y.
Yang
,
Y. C.
Wang
,
Z. Y.
Geng
, and
Z. Y.
Liu
,
Chem. Phys. Lett.
430
,
265
(
2006
);
V.
Blagojevic
,
M. J. Y.
Jarvis
,
E.
Flaim
,
G. K.
Koyanagi
,
V. V.
Lavrov
, and
D. K.
Bohme
,
Angew. Chem.
42
,
4923
(
2003
).
25.
See, for instance,
T.
Goto
,
A.
Niimi
,
K.
Hirano
,
N.
Takahata
,
S. -I.
Fujita
,
M.
Shimokawabe
, and
N.
Takezawa
,
React. Kinet. Catal. Lett.
69
,
375
(
2000
).
26.
See, for instance,
T.
Yamada
,
K.
Hashimoto
,
Y.
Kitaichi
,
K.
Suzuki
, and
T.
Ikeno
,
Chem. Lett.
30
,
268
(
2001
);
A. W.
Kaplan
and
R. G.
Bergman
,
Organometallics
16
,
1106
(
1997
);
A. W.
Kaplan
and
R. G.
Bergman
,
Organometallics
17
,
5072
(
1998
).
27.
I.
Lein
and
P.
Potzinger
,
Organometallics
19
,
4701
(
2000
).
28.
K.
Yoshizawa
,
Y.
Shiota
,
T.
Yumura
, and
T.
Yamabe
,
J. Phys. Chem. B
104
,
734
(
2000
);
N. A.
Kachurovskaya
,
G. M.
Zhidomirov
, and
R. A.
van Santen
,
J. Phys. Chem. B
108
,
5944
(
2004
).
29.
See, for instance,
K.
Imamura
and
H.
Tokiwa
,
Chem. Phys. Lett.
436
,
263
(
2007
);
H.
Kato
,
J.
Lee
,
K.
Sawabe
, and
Y.
Matsumoto
,
Surf. Sci.
445
,
209
(
2000
).
30.
L. G.
Cabrini
,
M.
Benassi
,
M. N.
Eberlin
,
T.
Okazaki
, and
K. K.
Laali
,
Eur. J. Org. Chem.
70
(
2007
).
31.
M.
Eckert-Maksić
,
Z.
Glasovac
,
H.
Maskill
, and
I.
Zrinski
,
J. Phys. Org. Chem.
16
,
491
(
2003
).
32.
D.
Ascenzi
,
N.
Cont
,
G.
Guella
,
P.
Franceschi
, and
P.
Tosi
,
J. Phys. Chem. A
111
,
12513
(
2007
) (and references therein).
33.
P.
Franceschi
,
L.
Penasa
,
D.
Ascenzi
,
D.
Bassi
,
M.
Scotoni
, and
P.
Tosi
,
Int. J. Mass Spectrom.
265
,
224
(
2007
).
34.
J. A.
Pople
,
P. M. W.
Gill
, and
B. G.
Johnson
,
Chem. Phys. Lett.
199
,
557
(
1992
);
H. B.
Schlegel
, in
Computational Theoretical Organic Chemistry
, edited by
I. G.
Csizsmadia
and
R.
Daudel
(
Reidel
,
Dordrecht
,
1981
), p.
129
159
;
H. B.
Schlegel
,
J. Chem. Phys.
77
,
3676
(
1982
);
H. B.
Schlegel
,
J. S.
Binkley
, and
J. A.
Pople
,
J. Chem. Phys.
80
,
1976
(
1984
);
H. B.
Schlegel
,
J. Comput. Chem.
3
,
214
(
1982
).
35.
R. G.
Parr
and
W.
Yang
,
Density Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
), Chap. 3.
36.
A. D.
Becke
,
ACS Symp. Ser.
394
,
165
(
1989
);
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
);
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
37.
F.
Jensen
,
Introduction to Computational Chemistry
(
Wiley
,
New York
,
1999
), Chap. 6.
38.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
);
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
);
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
39.
C.
Gonzalez
and
H. B.
Schlegel
,
J. Chem. Phys.
90
,
2154
(
1989
);
C.
Gonzalez
and
H. B.
Schlegel
,
J. Phys. Chem.
94
,
5523
(
1990
) (and references therein).
40.
See EPAPS document No. E-JCPSA6-130-028923 for (A) some further details on the theoretical methods, (B) tables of energetic data, (C) DFT(B3LYP)//6–31G(d) optimized structures: energies, Cartesian coordinates, geometrical parameters, and NAO charges, (D) DFT (B3LYP)//cc–pVTZ optimized structures: Cartesian coordinates and energies, and (E) some furter details on the pathway from 3 to 4 (pathway a). For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
41.
R.
Seeger
and
J. A.
Pople
,
J. Chem. Phys.
66
,
3045
(
1977
);
R.
Bauernschmitt
and
R.
Ahlrichs
,
J. Chem. Phys.
104
,
9047
(
1996
);
H. B.
Schlegel
and
J. J.
McDouall
, in
Computational Advances in Organic Chemistry
, edited by
C.
Ogretir
and
I. G.
Csizmadia
(
Kluwer Academic
,
Dordrecht, The Netherlands
,
1991
), p.
167
.
42.
S.
Yamanaka
,
T.
Kawakami
,
K.
Nagao
, and
K.
Yamaguchi
,
Chem. Phys. Lett.
231
,
25
(
1994
);
K.
Yamaguchi
,
F.
Jensen
,
A.
Dorigo
, and
K. N.
Houk
,
Chem. Phys. Lett.
149
,
537
(
1988
);
C. J.
Cramer
,
F. J.
Dulles
,
G. J.
Giesen
, and
J.
Almlöf
,
Chem. Phys. Lett.
245
,
165
(
1995
);
E.
Goldstein
,
B.
Beno
, and
K. N.
Houk
,
J. Am. Chem. Soc.
118
,
6036
(
1996
).
43.
J. E.
Carpenter
and
F.
Weinhold
,
J. Mol. Struct.: THEOCHEM
169
,
41
(
1988
);
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev. (Washington, D.C.)
88
,
899
(
1988
).
44.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
);
B. O.
Roos
, in
The Complete Active Space Self-Consistent Field Method and its Applications in Electronic Structure Calculations
,
Ab Initio Methods in Quantum Chemistry-II
, edited by
K. P.
Lawley
(
Wiley
,
New York
,
1987
);
the implementation of this kind of approach in the GAUSSIAN program system is documented by
D.
Hegarty
and
M. A.
Robb
Mol. Phys.
38
,
1795
(
1979
);
R. H. A.
Eade
and
M. A.
Robb
Chem. Phys. Lett.
83
,
362
(
1981
).
45.
K.
Andersson
,
P. -Å.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
);
K.
Andersson
,
P. -Å.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
96
,
1218
(
1992
);
B. O.
Roos
,
K.
Andersson
,
M. P.
Fülscher
,
P. -Å.
Malmqvist
,
L.
Serrano-Andres
,
K.
Pierloot
,
M.
Mercham
,
Adv. Chem. Phys.
93
,
219
(
1996
);
G.
Ghigo
,
B. O.
Roos
, and
P. -Å.
Malmqvist
,
Chem. Phys. Lett.
396
,
142
(
2004
).
46.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN, Gaussian, Inc., Pittsburgh PA (
2003
), www.gaussian.com.
47.
K.
Andersson
,
F.
Aquilante
,
M.
Barysz
,
E.
Bednarz
,
A.
Bernhardsson
,
M. R. A.
Blomberg
,
Y.
Carissan
,
D. L.
Cooper
,
M.
Cossi
,
A.
Devarajan
,
L.
De Vico
,
N.
Ferré
,
M. P.
Fülscher
,
A.
Gaenko
,
L.
Gagliardi
,
G.
Ghigo
,
C.
de Graaf
,
B. A.
Hess
,
D.
Hagberg
,
A.
Holt
,
G.
Karlström
,
J. W.
Krogh
,
R.
Lindh
,
P. -Å.
Malmqvist
,
T.
Nakajima
,
P.
Neogrády
,
J.
Olsen
,
T. B.
Pedersen
,
J.
Raab
,
M.
Reiher
,
B. O.
Roos
,
U.
Ryde
,
B.
Schimmelpfennig
,
M.
Schütz
,
L.
Seijo
,
L.
Serrano-Andrés
,
P. E. M.
Siegbahn
,
J.
Stålring
,
T.
Thorsteinsson
,
V.
Veryazov
,
P. -O.
Widmark
, and
A.
Wolf
, MOLCAS, Release 7.0, Department of Theoretical Chemistry, Lund University, Sweden (
2007
).
48.
G.
Schaftenaar
and
J. H.
Noordik
,
J. Comput.-Aided Mol. Design
14
,
123
(
2000
), site: http://www.cmbi.ru.nl/molden/molden.html;
A.
Kokalj
,
Comput. Mater. Sci.
28
,
155
(
2003
). Code available from http://www.xcrysden.org/.
49.
D.
Ascenzi
,
D.
Bassi
,
P.
Franceschi
,
P.
Tosi
,
M.
Di Stefano
,
M.
Rosi
, and
A.
Sgamellotti
,
J. Chem. Phys.
119
,
8366
(
2003
).
50.
G.
Guella
,
D.
Ascenzi
,
P.
Franceschi
, and
P.
Tosi
,
Rapid Commun. Mass Spectrom.
19
,
1951
(
2005
).
51.
M.
Winkler
and
W.
Sander
,
J. Org. Chem.
71
,
6357
(
2006
) (and references therein).
52.
In phenylium, the CC’C angle is 147° wide.
53.
D.
Zagorevskii
,
J. -M.
Regimbal
, and
J. L.
Holmes
,
Int. J. Mass Spectrom. Ion Process.
160
,
211
(
1997
) and Ref. 13 therein.
54.
H. J.
Wörner
and
F.
Merkt
,
J. Chem. Phys.
127
,
034303
(
2007
).
55.
I. N.
Nazarov
,
I. B.
Torgov
, and
L. N.
Terekhova
,
Izv. Akad. Nauk SSSR, Otd. Khim Nauk
200
(
1942
).
56.
Our intermediate 4 corresponds to III in the paper by Zagorevskii et al (Ref. 53), who locate it at +1kcalmol1 with respect to II (our 3), in terms of MNDO formation enthalpies.
57.
This structure was already commented by Zagorevskii et al (Ref. 53), who located it at 35kcalmol1 above their structure II (our 3), in terms of MNDO formation enthalpies.
58.
Structure 11 had already been commented by Zagorevskii et al (Ref. 53), who assessed its formation enthalpies, by MNDO computations, as the lowest among other C6H5O+ isomers. The energy difference of 18kcalmol1 can be compared with the value of 17kcalmol1 assessed in ref. 53.
59.
D.
Kuck
, in
The Chemistry of Phenols
, edited by
Z.
Rappoport
(
Wiley
,
New York
,
2003
), p.
259
(and references therein).
60.
F.
Muntean
and
P. B.
Armentrout
,
J. Phys. Chem. B
106
,
8117
(
2002
) (and references therein).
61.
H. T.
Le
,
R.
Flammang
,
P.
Gerbaux
,
G.
Bouchoux
, and
M. T.
Nguyen
,
J. Phys. Chem. A
105
,
11582
(
2001
).

Supplementary Material

You do not currently have access to this content.