A reactive system’s slow dynamic behavior is approximated well by evolution on manifolds of dimension lower than that of the full composition space. This work addresses the construction of one-dimensional slow invariant manifolds for dynamical systems arising from modeling unsteady spatially homogeneous closed reactive systems. Additionally, the relation between the systems’ slow dynamics, described by the constructed manifolds, and thermodynamics is clarified. It is shown that other than identifying the equilibrium state, traditional equilibrium thermodynamic potentials provide no guidance in constructing the systems’ actual slow invariant manifolds. The construction technique is based on analyzing the composition space of the reactive system. The system’s finite and infinite equilibria are calculated using a homotopy continuation method. The slow invariant manifolds are constructed by calculating attractive heteroclinic orbits which connect appropriate equilibria to the unique stable physical equilibrium point. Application of the method to several realistic reactive systems, including a detailed hydrogen-air kinetics model, reveals that constructing the actual slow invariant manifolds can be computationally efficient and algorithmically easy.

1.
J. H.
Seinfeld
and
S. N.
Pandis
,
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
(
Wiley
,
New York
,
1998
).
2.
A. L.
Kuharsky
and
A. L.
Fogelson
,
Biophys. J.
80
,
1050
(
2001
).
3.
J. F.
Griffiths
,
Prog. Energy Combust. Sci.
21
,
25
(
1995
).
4.
J. M.
Powers
,
J. Propul. Power
22
,
1217
(
2006
).
5.
Z.
Ren
and
S. B.
Pope
,
Combust. Flame
147
,
243
(
2006
).
6.
T.
Turanyi
,
T.
Berces
, and
S.
Vajda
,
Int. J. Chem. Kinet.
21
,
83
(
1989
).
7.
G.
Li
,
A.
Tomlin
,
H.
Rabitz
, and
J.
Toth
,
J. Chem. Phys.
101
,
1172
(
1994
).
8.
L.
Petzold
and
W.
Zhu
,
AIChE J.
45
,
869
(
1999
).
9.
T.
Lu
and
C. K.
Law
,
Proc. Combust. Inst.
30
,
1333
(
2005
).
10.
U.
Maas
and
S. B.
Pope
,
Combust. Flame
88
,
239
(
1992
).
11.
V.
Bykov
,
V.
Gol’dshtein
, and
U.
Maas
,
Combust. Theory Modell.
12
,
389
(
2008
).
12.
S. H.
Lam
and
D. A.
Goussis
,
Proc. Combust. Inst.
22
,
931
(
1988
).
13.
S. H.
Lam
,
Combust. Sci. Technol.
89
,
375
(
1993
).
14.
S. H.
Lam
and
D. A.
Goussis
,
Int. J. Chem. Kinet.
26
,
461
(
1994
).
15.
M. R.
Roussel
and
S. J.
Fraser
,
J. Chem. Phys.
93
,
1072
(
1990
).
16.
M. R.
Roussel
and
S. J.
Fraser
,
J. Chem. Phys.
94
,
7106
(
1991
).
17.
M. J.
Davis
and
R. T.
Skodje
,
J. Chem. Phys.
111
,
859
(
1999
).
18.
A. N.
Gorban
,
I. V.
Karlin
, and
A. Y.
Zinovyev
,
Phys. Rep.
396
,
197
(
2004
).
19.
D.
Lebiedz
,
J. Chem. Phys.
120
,
6890
(
2004
).
20.
A. N.
Gorban
and
I. V.
Karlin
,
Chem. Eng. Sci.
58
,
4751
(
2003
).
21.
Z.
Ren
,
S. B.
Pope
,
A.
Vladimirsky
, and
J. M.
Guckenheimer
,
J. Chem. Phys.
124
,
114111
(
2006
).
22.
F.
Creta
,
A.
Adrover
,
S.
Cerbelli
,
M.
Valorani
, and
M.
Giona
,
J. Phys. Chem. A
110
,
13447
(
2006
).
23.
F.
Creta
,
A.
Adrover
,
S.
Cerbelli
,
M.
Valorani
, and
M.
Giona
,
J. Phys. Chem. A
110
,
13463
(
2006
).
24.
A.
Zagaris
,
H. G.
Kaper
, and
T. J.
Kaper
,
J. Nonlinear Sci.
14
,
59
(
2004
).
25.
D. A.
Goussis
,
M.
Valorani
,
F.
Creta
, and
H. N.
Najm
,
Prog. Comput. Fluid Dyn.
5
,
316
(
2005
).
26.
S.
Singh
,
J. M.
Powers
, and
S.
Paolucci
,
J. Chem. Phys.
117
,
1482
(
2002
).
27.
J.
Warnatz
,
U.
Maas
, and
R. W.
Dibble
,
Combustion
(
Springer
,
Berlin
,
1999
).
28.
V.
Reinhardt
,
M.
Winckler
, and
D.
Lebiedz
,
J. Phys. Chem. A
112
,
1712
(
2008
).
29.
J. C.
Keck
and
D.
Gillespie
,
Combust. Flame
17
,
237
(
1971
).
30.
S.
Ugarte
,
Y.
Gao
, and
H.
Metghalchi
,
Int. J. Thermodyn.
8
,
43
(
2005
).
31.
Z.
Ren
,
S. B.
Pope
,
A.
Vladimirsky
,
J. M.
Guckenheimer
, and
M.
John
,
Proc. Combust. Inst.
31
,
473
(
2007
).
32.
H. G.
Kaper
and
T. J.
Kaper
,
Physica D
165
,
66
(
2002
).
33.
M.
Valorani
,
F.
Creta
,
D. A.
Goussis
,
J. C.
Lee
, and
H. N.
Najm
,
Combust. Flame
146
,
29
(
2006
).
34.
S. R.
de Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
(
Dover
,
New York
,
1984
).
35.
I.
Müller
and
W.
Weiss
,
Entropy and Energy: A Universal Competition
(
Springer
,
Berlin
,
2005
).
36.
I.
Prigogine
and
R.
Defay
,
Chemical Thermodynamics
(
Longmans
,
London
,
1954
).
37.
W. J.
Vincenti
and
C. H.
Kruger
,
Introduction to Physical Gas Dynamics
(
Wiley
,
New York
,
1965
).
38.
H. B.
Callen
,
Thermodynamics and an Introduction to Thermostatistics
(
Wiley
,
New York
,
1985
).
39.
I.
Prigogine
,
Introduction to Thermodynamics of Irreversible Processes
(
Interscience
,
New York
,
1967
).
40.
J. M.
Powers
and
S.
Paolucci
,
Am. J. Phys.
76
,
848
(
2008
).
41.
L.
Perko
,
Differential Equations and Dynamical Systems
(
Springer
,
New York
,
2001
).
42.
A. J.
Sommese
and
C. W.
Wampler
,
The Numerical Solution of Systems of Polynomials Arising in Engineering and Science
(
World Scientific
,
Hackensack, NJ
,
2005
).
43.
S. J.
Fraser
,
J. Chem. Phys.
116
,
1277
(
2002
).
44.
D. J.
Bates
,
J. D.
Hauenstein
,
A. J.
Sommese
, and
C. W.
Wampler
, BERTINI, software for numerical algebraic geometry, available at http://www.nd.edu/~sommese/bertini.
45.
R. J.
Kee
,
F. M.
Rupley
, and
J. A.
Miller
,
Sandia National Laboratories
Report No. SAND87–8215B,
1992
.
46.
A.
Morgan
,
Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1987
).
47.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillation, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer-Verlag
,
New York
,
1983
).
48.
D. B.
Shear
,
J. Chem. Phys.
48
,
4144
(
1968
).
49.
A. A.
Andronov
,
Qualitative Theory of Second Order Dynamical Systems
(
Wiley
,
New York
,
1973
).
50.
D. L.
Baulch
,
C. T.
Bowman
,
C. J.
Cobos
,
R. A.
Cox
,
T.
Just
,
J. A.
Kerr
,
M. J.
Pilling
,
D.
Stocker
,
J.
Troe
,
W.
Tsang
,
R. W.
Walker
, and
J.
Warnatz
,
J. Phys. Chem. Ref. Data
34
,
757
(
2005
).
51.
A. J.
Lichtenberg
and
M. A.
Lieberman
,
Regular and Chaotic Dynamics
(
Springer-Verlag
,
New York
,
1992
).
52.
S.
Lefschetz
,
Differential Equations: Geometric Theory
(
Interscience
,
New York
,
1963
).
53.
J. A.
Miller
,
R. E.
Mitchell
,
M. D.
Smooke
, and
R. J.
Kee
,
Proc. Combust. Inst.
19
,
181
(
1982
).
54.
M. D.
Smooke
,
J. A.
Miller
, and
R. J.
Kee
,
Combust. Sci. Technol.
34
,
79
(
1983
).
55.
F.
Dabireau
,
B.
Cuenot
,
O.
Vermorel
, and
T.
Poinsot
,
Combust. Flame
135
,
123
(
2003
).
56.
J. M.
Powers
and
S.
Paolucci
,
AIAA J.
43
,
1088
(
2005
).
You do not currently have access to this content.