Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as L7i, B11, O17, N23a, and A27l.

1.
I.
Solomon
,
C. R. Acad. Sci. Paris
248
,
92
(
1959
).
2.
S. R.
Hartmann
and
E. L.
Hahn
,
Phys. Rev.
128
,
2042
(
1962
).
3.
C. A.
Fyfe
,
H.
Grondey
,
K. T.
Mueller
,
K. C.
Wong-Moon
, and
T.
Markus
,
J. Am. Chem. Soc.
114
,
5876
(
1992
).
4.
S. H.
Wang
,
S. M.
De Paul
, and
L. M.
Bull
,
J. Magn. Reson.
125
,
364
(
1997
).
5.
L.
Frydman
and
J. S.
Harwood
,
J. Am. Chem. Soc.
117
,
5367
(
1995
).
6.
C.
Fernandez
,
L.
Delevoye
,
J. P.
Amoureux
,
D. P.
Lang
, and
M.
Pruski
,
J. Am. Chem. Soc.
119
,
6858
(
1997
).
7.
S. E.
Ashbrook
and
S.
Wimperis
,
Chem. Phys. Lett.
340
,
500
(
2001
).
8.
S. E.
Ashbrook
,
S. P.
Brown
, and
S.
Wimperis
,
Chem. Phys. Lett.
288
,
509
(
1998
).
9.
S. E.
Ashbrook
and
S.
Wimperis
,
J. Magn. Reson.
147
,
238
(
2000
).
10.
S. E.
Ashbrook
,
J.
McManus
,
K. J. D.
MacKenzie
, and
S.
Wimperis
,
J. Phys. Chem. B
104
,
6408
(
2000
).
11.
G.
Wu
,
D.
Rovnyak
, and
R. G.
Griffin
,
J. Am. Chem. Soc.
118
,
9326
(
1996
).
12.
T.
Vosegaard
,
P.
Florian
,
D.
Massiot
, and
P. J.
Grandinetti
,
J. Chem. Phys.
114
,
4618
(
2001
).
13.
M.
Baldus
,
D.
Rovnyak
, and
R. G.
Griffin
,
J. Chem. Phys.
112
,
5902
(
2000
).
14.
G.
Mali
and
F.
Taulelle
,
Chem. Commun. (Cambridge)
2004
,
868
.
16.
A. J.
Vega
,
J. Magn. Reson.
96
,
50
(
1992
).
17.
G.
Jeschke
,
J. Chem. Phys.
108
,
907
(
1998
).
18.
A. J.
Vega
,
Solid State Nucl. Magn. Reson.
1
,
17
(
1992
).
19.
S.
Ding
and
C. A.
McDowell
,
J. Mol. Struct.
355
,
135
(
1995
).
20.
S.
Hayashi
,
Solid State Nucl. Magn. Reson.
3
,
93
(
1994
).
21.
Y.
Zhang
,
F.
Deng
,
J.
Qiu
, and
C.
Ye
,
Solid State Nucl. Magn. Reson.
15
,
209
(
2000
).
22.
W.
Sun
,
J. T.
Stephen
,
L. D.
Potter
, and
Y.
Wu
,
J. Magn. Reson. A
116
,
181
(
1995
).
23.
S. E.
Ashbrook
and
S.
Wimperis
,
J. Chem. Phys.
120
,
2719
(
2004
).
24.
A.
Wokaun
and
R. R.
Ernst
,
J. Chem. Phys.
67
,
1752
(
1977
).
25.
N.
Müller
,
G.
Bodenhausen
, and
R. R.
Ernst
,
J. Magn. Reson.
75
,
297
(
1987
).
26.
E.
Kundla
,
A.
Samoson
, and
E.
Lippmaa
,
Chem. Phys. Lett.
83
,
229
(
1981
).
28.
S. E.
Ashbrook
and
S.
Wimperis
,
Mol. Phys.
98
,
1
(
2000
).
You do not currently have access to this content.