We utilize the novel non-Markovian quantum jump (NMQJ) approach to stochastically simulate exciton dynamics derived from a time-convolutionless master equation. For relevant parameters and time scales, the time-dependent, oscillatory decoherence rates can have negative regions, a signature of non-Markovian behavior and of the revival of coherences. This can lead to non-Markovian population beatings for a dimer system at room temperature. We show that strong exciton-phonon coupling to low frequency modes can considerably modify transport properties. We observe increased exciton transport, which can be seen as an extension of recent environment-assisted quantum transport concepts to the non-Markovian regime. Within the NMQJ method, the Fenna–Matthew–Olson protein is investigated as a prototype for larger photosynthetic complexes.

1.
R. E.
Blankenship
,
Molecular Mechanism of Photosynthesis
(
Blackwell Science
,
London
,
2002
).
2.
Y. -C.
Cheng
and
G. R.
Fleming
,
Annu. Rev. Phys. Chem.
60
,
241
(
2009
).
3.
T.
Förster
, in
Modern Quantum Chemistry, Istanbul Lectures
, edited by
O.
Sinanoglu
(
Academic
,
New York
,
1965
), Vol.
3
, pp.
93
137
.
4.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley
,
New York
,
2004
).
5.
S.
Nakajima
,
Prog. Theor. Phys.
20
,
948
(
1958
).
6.
R.
Zwanzig
,
J. Chem. Phys.
33
,
1338
(
1960
).
7.
N.
Hashitsumae
,
F.
Shibata
, and
M.
Shingu
,
J. Stat. Phys.
17
,
155
(
1977
).
8.
F.
Shibata
,
Y.
Takahashi
, and
N.
Hashitsume
,
J. Stat. Phys.
17
,
171
(
1977
).
9.
H. -P.
Breuer
,
B.
Kappler
, and
F.
Petruccione
,
Ann. Phys.
291
,
36
(
2001
).
10.
A.
Pereverzev
and
E. R.
Bittner
,
J. Chem. Phys.
125
,
104906
(
2006
).
11.
S.
Jang
,
Y. -C.
Cheng
,
D. R.
Reichman
, and
J. D.
Eaves
,
J. Chem. Phys.
129
,
101104
(
2008
).
12.
S.
Mukamel
,
I.
Oppenheim
, and
J.
Ross
,
Phys. Rev. A
17
,
1988
(
1978
).
13.
T.
Renger
and
R. A.
Marcus
,
J. Chem. Phys.
116
,
9997
(
2002
).
14.
H. -P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
New York
,
2002
).
15.
B.
Palmieri
,
D.
Abramavicius
, and
S.
Mukamel
,
J. Chem. Phys.
130
,
204512
(
2009
).
16.
F.
Brito
and
A. O.
Caldeira
,
New J. Phys.
10
,
115014
(
2008
).
17.
P.
Rebentrost
,
I.
Serban
,
T.
Schulte-Herbrüggen
, and
F. K.
Wilhelm
,
Phys. Rev. Lett.
102
,
090401
(
2009
).
18.
J.
Roden
,
A.
Eisfeld
,
W.
Wolff
, and
W. T.
Strunz
,
Phys. Rev. Lett.
103
,
058301
(
2009
).
20.
Y.
Tanimura
and
P. G.
Wolynes
,
Phys. Rev. A
43
,
4131
(
1991
).
21.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
22.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
23.
A.
Ishizaki
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
74
,
3131
(
2005
).
24.
R. -X.
Xu
,
P.
Cui
,
X. -Q.
Li
,
Y.
Mo
, and
Y.
Yan
,
J. Chem. Phys.
122
,
041103
(
2005
).
25.
Q.
Shi
,
L.
Chen
,
G.
Nan
,
R. -X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
130
,
084105
(
2009
).
26.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
17255
(
2009
).
27.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T. -K.
Ahn
,
T.
Mančál
,
Y. -C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
446
,
782
(
2007
).
28.
J.
Dalibard
,
Y.
Castin
, and
K.
Mølmer
,
Phys. Rev. Lett.
68
,
580
(
1992
).
29.
J.
Piilo
,
S.
Maniscalco
,
K.
Härkönen
, and
K. -A.
Suominen
,
Phys. Rev. Lett.
100
,
180402
(
2008
).
30.
J.
Piilo
,
K.
Härkönen
,
S.
Maniscalco
, and
K. -A.
Suominen
,
Phys. Rev. A
79
,
062112
(
2009
).
31.
H. -P.
Breuer
and
J.
Piilo
,
Europhys. Lett.
85
,
50004
(
2009
).
32.
H.
Lee
,
Y. -C.
Cheng
, and
G. R.
Fleming
,
Science
316
,
1462
(
2007
).
33.
M.
Mohseni
,
P.
Rebentrost
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
J. Chem. Phys.
129
,
174106
(
2008
).
34.
P.
Rebentrost
,
M.
Mohseni
,
I.
Kassal
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
New J. Phys.
11
,
033003
(
2009
).
35.
M. B.
Plenio
and
S. F.
Huelga
,
New J. Phys.
10
,
113019
(
2008
).
36.
D.
Egorova
,
M.
Thoss
,
W.
Domcke
, and
H.
Wang
,
J. Chem. Phys.
119
,
2761
(
2003
).
37.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234110
(
2009
).
38.
J.
Adolphs
and
T.
Renger
,
Biophys. J.
91
,
2778
(
2006
).
39.
P.
Rebentrost
,
M.
Mohseni
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. B
113
,
9942
(
2009
).
40.
F.
Fassioli
,
A.
Nazir
, and
A.
Olaya-Castro
, e-print arXiv:quant-ph/0907.5183.
41.
J.
Gilmore
and
R. H.
McKenzie
,
J. Phys. Chem. A
112
,
2162
(
2008
).
42.
M.
Cho
,
H. M.
Vaswani
,
T.
Brixner
,
J.
Stenger
, and
G. R.
Fleming
,
J. Phys. Chem. B
109
,
10542
(
2005
).
43.
A.
Suarez
,
R.
Silbey
, and
I.
Oppenheim
,
J. Chem. Phys.
97
,
5101
(
1992
).
44.
A.
Olaya-Castro
,
C.
Fan Lee
,
F.
Fassioli Olsen
, and
N. F.
Johnson
,
Phys. Rev. B
78
,
085115
(
2008
).
45.
M.
Sarovar
,
A.
Ishizaki
,
G. R.
Fleming
, and
K. B.
Whaley
, e-print arXiv:quant-ph/0905.3787.
You do not currently have access to this content.