Computational simulations of the electronic spectra with ab initio electronic structure calculations are presented for all-transα,ω-diphenylpolyenes with the polyene double bond number (N) from 1 to 7. A direct comparison of the fluorescence spectra of diphenylpolyenes was made between the results of highly accurate calculations and the experimental data for the systems with various chain lengths. For the realistic simulation of the emission, the total vibrational wave function was described approximately as a direct product of one-dimensional (1D) vibrational wave functions along the normal coordinates that are determined from the vibrational analysis of the ground state. The observed spectra can be reproduced in a computationally efficient way by selecting effective C–C and C=C stretching modes for the constructions of the 1D vibrational Hamiltonians. The electronic structure calculations were performed using the multireference Møller–Plesset perturbation theory with complete active space configuration interaction reference functions. Based on the vertical excitation energies computed, the lowest singlet excited state of diphenylbutadiene is shown to be the optically forbidden 2A1g state. The simulations of fluorescence spectra involving vibronic coupling effects reveal that the observed strong single C=C band consists of two major degenerate vibrational C=C modes for the shorter diphenylpolyenes with N=3 and 5. Further, the relative intensities of the C–C stretching modes in the fluorescence spectra tend to be larger than those of the C=C stretching modes for the systems with N over 5. This indicates that the geometric differences of the energy minima between the ground (1A1g) and 2A1g states grow larger towards the direction of the C–C stretching mode with increasing N.

1.
B. S.
Hudson
,
B. E.
Kohler
, and
K.
Schulten
, in
Excited States
, edited by
E. C.
Lim
(
Academic
,
New York
,
1982
), Vol.
6
, p.
1
.
2.
B. S.
Hudson
and
B. E.
Kohler
,
Chem. Phys. Lett.
14
,
299
(
1972
).
3.
K.
Schulten
and
M.
Karplus
,
Chem. Phys. Lett.
14
,
305
(
1972
).
4.
B. S.
Hudson
and
B. E.
Kohler
,
J. Chem. Phys.
59
,
4984
(
1973
).
5.
M. T.
Allen
and
D. G.
Whitten
,
Chem. Rev. (Washington, D.C.)
89
,
1691
(
1989
).
6.
G.
Orlandi
,
F.
Zerbetto
, and
M. Z.
Zgierski
,
Chem. Rev. (Washington, D.C.)
91
,
867
(
1991
).
7.
B. E.
Kohler
,
Chem. Rev. (Washington, D.C.)
93
,
41
(
1993
).
8.
J. R.
Andrews
and
B. S.
Hudson
,
J. Chem. Phys.
68
,
4587
(
1978
).
9.
T.
Ikeyama
and
T.
Azumi
,
J. Chem. Phys.
76
,
5672
(
1982
).
10.
J. F.
Shepanski
,
B. W.
Keelan
, and
A. H.
Zewail
,
Chem. Phys. Lett.
103
,
9
(
1983
).
11.
J. S.
Horwitz
,
B. E.
Kohler
, and
T. A.
Spiglanin
,
J. Chem. Phys.
83
,
2186
(
1985
).
12.
T.
Itoh
and
B. E.
Kohler
,
J. Chem. Phys.
91
,
1760
(
1987
).
13.
T.
Itoh
,
Chem. Phys. Lett.
159
,
263
(
1989
).
14.
S. M.
Bachilo
,
E. V.
Bachilo
, and
T.
Gillbro
,
Chem. Phys.
229
,
75
(
1998
).
15.
T.
Itoh
,
Chem. Phys. Lett.
342
,
550
(
2001
).
16.
T.
Itoh
,
Bull. Chem. Soc. Jpn.
75
,
1973
(
2002
).
17.
T.
Itoh
,
Chem. Phys. Lett.
377
,
577
(
2003
).
18.
F.
Zerbetto
,
J. Am. Chem. Soc.
117
,
1621
(
1995
).
19.
J. F.
Ye
,
H.
Chen
,
R.
Note
,
H.
Mizuseki
, and
Y.
Kawazoe
,
Int. J. Quantum Chem.
107
,
2006
(
2007
).
20.
C. M.
Marian
and
N.
Gilka
,
J. Chem. Theory Comput.
4
,
1501
(
2008
).
21.
K.
Schulten
,
I.
Ohmine
, and
M.
Karplus
,
J. Chem. Phys.
64
,
4422
(
1976
).
22.
P.
Tavan
and
K.
Schulten
,
J. Chem. Phys.
70
,
5407
(
1979
).
23.
A. C.
Lasaga
,
R. J.
Aerni
, and
M.
Karplus
,
J. Chem. Phys.
73
,
5230
(
1980
).
24.
R. P.
Hosteny
,
T. H.
Dunning
, Jr.
,
R. R.
Gilman
,
A.
Pipano
, and
I.
Shavitt
,
J. Chem. Phys.
62
,
4764
(
1975
).
25.
R. J.
Buenker
,
S.
Shih
, and
S. D.
Peyerimhoff
,
Chem. Phys. Lett.
44
,
385
(
1976
).
26.
L. E.
McMurchie
and
E. R.
Davidson
,
J. Chem. Phys.
66
,
2959
(
1977
).
27.
B. R.
Brooks
and
H. F.
Schaefer
 III
,
J. Chem. Phys.
68
,
4839
(
1978
).
28.
R. J.
Buenker
,
S. -K.
Shih
, and
S. D.
Peyerimhoff
,
Chem. Phys.
36
,
97
(
1979
).
29.
C.
Petrongolo
,
R. J.
Buenker
, and
S. D.
Peyerimhoff
,
J. Chem. Phys.
76
,
3655
(
1982
).
30.
O.
Kitao
and
H.
Nakatsuji
,
Chem. Phys. Lett.
143
,
528
(
1988
).
31.
R. J.
Cave
,
J. Chem. Phys.
92
,
2450
(
1990
).
32.
L.
Serrano-Andres
,
M.
Merchan
,
I.
Nebot-Gil
,
R.
Lindh
, and
B. O.
Roos
,
J. Chem. Phys.
98
,
3151
(
1993
).
33.
R. J.
Cave
and
E. R.
Davidson
,
J. Phys. Chem.
91
,
4481
(
1987
).
34.
R. J.
Cave
and
E. R.
Davidson
,
Chem. Phys. Lett.
148
,
190
(
1988
).
35.
R. L.
Graham
and
K. F.
Freed
,
J. Chem. Phys.
96
,
1304
(
1992
).
36.
L.
Serrano-Andres
,
J.
Sanchez-Marin
, and
I.
Nebot-Gil
,
J. Chem. Phys.
97
,
7499
(
1992
).
37.
M. A. C.
Nascimento
and
W. A.
Goddard
,
Chem. Phys. Lett.
60
,
197
(
1979
).
38.
M. A. C.
Nascimento
and
W. A.
Goddard
,
Chem. Phys.
36
,
147
(
1979
).
39.
R. J.
Cave
and
E. R.
Davidson
,
J. Phys. Chem.
92
,
614
(
1988
).
40.
M.
Said
,
D.
Maynau
, and
J. P.
Malrieu
,
J. Am. Chem. Soc.
106
,
580
(
1984
).
41.
R. J.
Cave
and
E. R.
Davidson
,
J. Phys. Chem.
92
,
2173
(
1988
).
42.
L.
Serrano-Andres
,
R.
Lindh
,
B. O.
Roos
, and
M.
Merchan
,
J. Phys. Chem.
97
,
9360
(
1993
).
43.
W. J.
Buma
and
F.
Zerbetto
,
J. Chem. Phys.
103
,
10492
(
1995
).
44.
F.
Negri
and
M. Z.
Zgierski
,
J. Chem. Phys.
115
,
1298
(
2001
).
45.
P.
Tavan
and
K.
Schulten
,
J. Chem. Phys.
85
,
6602
(
1986
).
46.
K.
Hirao
,
Chem. Phys. Lett.
190
,
374
(
1992
).
47.
K.
Hirao
,
Chem. Phys. Lett.
196
,
397
(
1992
).
48.
K.
Hirao
,
Chem. Phys. Lett.
201
,
59
(
1993
).
49.
T.
Hashimoto
,
H.
Nakano
, and
K.
Hirao
,
J. Chem. Phys.
104
,
6244
(
1996
).
50.
Y.
Kawashima
,
K.
Nakayama
,
H.
Nakano
, and
K.
Hirao
,
Chem. Phys. Lett.
267
,
82
(
1997
).
51.
K.
Nakayama
,
H.
Nakano
, and
K.
Hirao
,
Int. J. Quantum Chem.
66
,
157
(
1998
).
52.
Y.
Kurashige
,
H.
Nakano
,
Y.
Nakao
, and
K.
Hirao
,
Chem. Phys. Lett.
400
,
425
(
2004
).
53.
Y. -K.
Choe
,
Y.
Nakao
, and
K.
Hirao
,
J. Chem. Phys.
115
,
621
(
2001
).
54.
Y.
Nakao
,
Y. -K.
Choe
,
K.
Nakayama
, and
K.
Hirao
,
Mol. Phys.
100
,
729
(
2002
).
55.
T.
Itoh
,
J. Chem. Phys.
123
,
064302
(
2005
).
56.
G.
Herzberg
and
E.
Teller
,
Z. Phys. Chem. Abt. B
21
,
410
(
1933
).
57.
W. H.
Henneker
,
W.
Siebrand
, and
M. Z.
Zgierski
,
Chem. Phys. Lett.
68
,
5
(
1979
).
58.
W. H.
Henneker
,
W.
Siebrand
, and
M. Z.
Zgierski
,
J. Chem. Phys.
79
,
2495
(
1983
).
59.
F.
Duschinsky
,
Acta Physicochim. URSS
7
,
551
(
1937
).
60.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
, Jr.
,
J. Comput. Chem.
14
,
1347
(
1993
).
61.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN03, Revision E.01, Gaussian, Inc., Wallingford, CT,
2004
.
62.
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
, and
H. D.
Meyer
, The MCTDH package, version 8.3, University of Heidelberg, Germany,
2003
.
63.
L. A.
Sklar
,
B. S.
Hudson
,
M.
Petersen
, and
J.
Diamond
,
Biochemistry
16
,
813
(
1977
).
64.
L. A.
Heimbrook
,
B. E.
Kohler
, and
T. A.
Spiglanin
,
Proc. Natl. Acad. Sci. U.S.A.
80
,
4580
(
1983
).
65.
T. S.
Zwier
,
E.
Carrasquillo
, and
D. H.
Levy
,
J. Chem. Phys.
78
,
5493
(
1983
).
66.
B. E.
Kohler
and
T. A.
Spiglanin
,
J. Chem. Phys.
80
,
5465
(
1984
).
67.
J. S.
Horwitz
,
T.
Itoh
,
B. E.
Kohler
, and
C. W.
Spangler
,
J. Chem. Phys.
87
,
2433
(
1987
).
68.
B. E.
Kohler
and
T.
Itoh
,
J. Phys. Chem.
92
,
5120
(
1988
).
69.
T.
Itoh
,
J. Chem. Phys.
119
,
4516
(
2003
).
70.
T.
Itoh
,
J. Phys. Chem. A
111
,
3502
(
2007
).
71.
T.
Itoh
,
Chem. Phys. Lett.
444
,
226
(
2007
).
72.
V.
Molina
,
M.
Merchan
, and
B. O.
Roos
,
J. Phys. Chem. A
101
,
3478
(
1997
).
73.
B. E.
Kohler
and
J. A.
Pescatore
, Jr.
, in
Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics and Molecular Electronics
, edited by
J. L.
Bredas
and
R. R.
Chance
(
Kluwer Academic
,
Dordrecht
,
1990
), p.
353
.
You do not currently have access to this content.