Long-range solvation properties of strongly coupled dipolar systems simulated using the Ewald and reaction field methods are assessed by using electric fluctuation formulas for a dielectric medium. Some components of the fluctuating electric multipole moments are suppressed, whereas other components are favored as the boundary of the simulation box is approached. An analysis of electrostatic interactions in a periodic cubic system suggests that these structural effects are due to the periodicity embedded in the Ewald method. Furthermore, the results obtained using the reaction field method are very similar to those obtained using the Ewald method, an effect which we attribute to the use of toroidal boundary conditions in the former case. Thus, the long-range solvation properties of polar liquids simulated using either of the two methods are nondielectric in their character.

1.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
, 2nd ed. (
Academic
,
New York
,
2002
).
2.
P. J.
Steinbach
and
B. R.
Brooks
,
J. Comput. Chem.
15
,
667
(
1994
).
3.
P.
Linse
and
H. C.
Andersen
,
J. Chem. Phys.
85
,
3027
(
1986
).
4.
G.
Karlström
,
J.
Stenhammar
, and
P.
Linse
,
J. Phys.: Condens. Matter
20
,
494204
(
2008
).
5.
D.
Levesque
,
G. N.
Patey
, and
J. J.
Weis
,
Mol. Phys.
34
,
1077
(
1977
).
6.
D. J.
Adams
,
E. M.
Adams
, and
G. J.
Hills
,
Mol. Phys.
38
,
387
(
1979
).
7.
P.
Ewald
,
Ann. Phys.
369
,
253
(
1921
).
8.
S. W.
de Leeuw
,
J. W.
Perram
, and
E. R.
Smith
,
Proc. R. Soc. London, Ser. A
373
,
27
(
1980
).
9.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulations Using Particles
(
McGraw-Hill
,
New York
,
1981
).
10.
A. W.
Appel
,
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
6
,
85
(
1985
).
11.
J. A.
Barker
and
R. O.
Watts
,
Mol. Phys.
26
,
789
(
1973
).
12.
C. J. F.
Böttcher
,
Theory of Electric Polarization
, 1st ed. (
Elsevier
,
New York
,
1952
).
13.
D. J.
Adams
and
I. R.
McDonald
,
Mol. Phys.
32
,
931
(
1976
).
14.
M.
Neumann
,
Mol. Phys.
39
,
437
(
1980
).
15.
G.
Stell
,
N.
Patey
, and
J. S.
Høye
,
Adv. Chem. Phys.
48
,
183
(
1981
).
16.
T. M.
Nymand
and
P.
Linse
,
J. Chem. Phys.
112
,
6386
(
2000
).
17.
J.
Stenhammar
,
P.
Linse
,
P. -Å.
Malmqvist
, and
G.
Karlström
,
J. Chem. Phys.
130
,
124521
(
2009
).
18.
P.
Linse
,
J. Chem. Phys.
128
,
214505
(
2008
).
19.
Formally, the requirement that r1+r2<r is not fulfilled for all r1 and r2 in a cubic lattice. In our further analysis we will, however, limit ourselves to a sphere of radius a/2 centered at the origin, thus excluding the corners of the cube where the expansion breaks down from the analysis.
20.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
21.
P.
Linse
,
MOLSIM
(
Lund University
,
Sweden
,
2007
).
22.
M.
Neumann
,
Mol. Phys.
50
,
841
(
1983
).
23.
G.
Hummer
,
L.
Pratt
,
A.
Garcia
, and
M.
Neumann
,
AIP Conf. Proc.
492
,
84
(
1999
).
24.
G.
Mathias
and
P.
Tavan
,
J. Chem. Phys.
120
,
4393
(
2004
).
25.
P. H.
Hünenberger
and
J. A.
McCammon
,
Biophys. Chem.
78
,
69
(
1999
).
26.
M. A.
Kastenholz
and
P. H.
Hünenberger
,
J. Phys. Chem. B
108
,
774
(
2004
).
27.
P. E.
Smith
and
B. M.
Pettitt
,
J. Chem. Phys.
105
,
4289
(
1996
).
28.
F.
Figueirido
,
G. S.
Del Buono
, and
L. M.
Levy
,
J. Chem. Phys.
103
,
6133
(
1995
).
29.
J. P.
Valleau
and
S. G.
Whittington
,
Statistical Mechanics. Part A: Equilibrium Techniques
(
Plenum
,
New York
,
1977
), Chap. 4.
30.
H. L.
Friedman
,
Mol. Phys.
29
,
1533
(
1975
).
31.
D. M.
Brink
and
G. R.
Satchler
,
Angular Momentum
, 2nd ed. (
Clarendon
,
Oxford
,
1968
).
You do not currently have access to this content.