We present a comparative study of two computer simulation methods to obtain static and dynamic properties of dilute polymer solutions. The first approach is a recently established hybrid algorithm based on dissipative coupling between molecular dynamics and lattice Boltzmann (LB), while the second is standard Brownian dynamics (BD) with fluctuating hydrodynamic interactions. Applying these methods to the same physical system (a single polymer chain in a good solvent in thermal equilibrium) allows us to draw a detailed and quantitative comparison in terms of both accuracy and efficiency. It is found that the static conformations of the LB model are distorted when the box length L is too small compared to the chain size. Furthermore, some dynamic properties of the LB model are subject to an L1 finite-size effect, while the BD model directly reproduces the asymptotic L behavior. Apart from these finite-size effects, it is also found that in order to obtain the correct dynamic properties for the LB simulations, it is crucial to properly thermalize all the kinetic modes. Only in this case, the results are in excellent agreement with each other, as expected. Moreover, Brownian dynamics is found to be much more efficient than lattice Boltzmann as long as the degree of polymerization is not excessively large.

1.
P. -G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca
,
1979
).
2.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
3.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
4.
C.
Pierleoni
and
J. -P.
Ryckaert
,
J. Chem. Phys.
96
,
8539
(
1992
).
5.
W.
Smith
and
D. C.
Rapaport
,
Mol. Simul.
9
,
25
(
1992
).
6.
B.
Dünweg
and
K.
Kremer
,
J. Chem. Phys.
99
,
6983
(
1993
).
7.
K.
Binder
,
Monte Carlo and Molecular Dynamics Simulation in Polymer Science
(
Clarendon
,
Oxford
,
1995
).
8.
P.
Sunthar
and
J. R.
Prakash
,
Europhys. Lett.
75
,
77
(
2006
).
9.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
,
Europhys. Lett.
19
,
155
(
1992
).
10.
A. G.
Schlijper
,
P. J.
Hoogerbrugge
, and
C. W.
Manke
,
J. Rheol.
39
,
567
(
1995
).
11.
P.
Espanol
and
P.
Warren
,
Europhys. Lett.
30
,
191
(
1995
).
12.
C. A.
Marsh
,
G.
Backx
, and
M. H.
Ernst
,
Europhys. Lett.
38
,
411
(
1997
).
13.
R.
Groot
and
P.
Warren
,
J. Chem. Phys.
107
,
4423
(
1997
).
15.
I.
Pagonabarraga
,
M. H. J.
Hagen
, and
D.
Frenkel
,
Europhys. Lett.
42
,
377
(
1998
).
16.
A.
Malevanets
and
R.
Kapral
,
J. Chem. Phys.
110
,
8605
(
1999
).
17.
S. H.
Lee
and
R.
Kapral
,
J. Chem. Phys.
124
,
214901
(
2006
).
18.
G.
Gompper
,
T.
Ihle
,
D. M.
Kroll
, and
R. G.
Winkler
,
Adv. Polym. Sci.
221
,
1
(
2009
).
19.
R.
Benzi
,
S.
Succi
, and
M.
Vergassola
,
Phys. Rep.
222
,
145
(
1992
).
20.
A. J. C.
Ladd
,
J. Fluid Mech.
271
,
285
(
1994
).
21.
A. J. C.
Ladd
,
J. Fluid Mech.
271
,
311
(
1994
).
22.
S.
Chen
and
G. D.
Doolen
,
Annu. Rev. Fluid Mech.
30
,
329
(
1998
).
23.
S.
Succi
,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
(
Oxford University Press
,
Oxford
,
2001
).
24.
A. J. C.
Ladd
and
R.
Verberg
,
J. Stat. Phys.
104
,
1191
(
2001
).
25.
B.
Dünweg
and
A. J. C.
Ladd
,
Adv. Polym. Sci.
221
,
89
(
2009
).
26.
P.
Ahlrichs
and
B.
Dünweg
,
Int. J. Mod. Phys. C
9
,
1429
(
1998
).
27.
P.
Ahlrichs
and
B.
Dünweg
,
J. Chem. Phys.
111
,
8225
(
1999
).
28.
R.
Adhikari
,
K.
Stratford
,
M. E.
Cates
, and
A. J.
Wagner
,
Europhys. Lett.
71
,
473
(
2005
).
29.
B.
Dünweg
,
U. D.
Schiller
, and
A. J. C.
Ladd
,
Phys. Rev. E
76
,
036704
(
2007
).
30.
D. L.
Ermak
and
J. A.
McCammon
,
J. Chem. Phys.
69
,
1352
(
1978
).
31.
R. M.
Jendrejack
,
J. J.
de Pablo
, and
M. D.
Graham
,
J. Chem. Phys.
116
,
7752
(
2002
).
32.
B.
Liu
and
B.
Dünweg
,
J. Chem. Phys.
118
,
8061
(
2003
).
33.
R.
Prabhakar
,
J. R.
Prakash
, and
T.
Sridhar
,
J. Rheol.
48
,
1251
(
2004
).
34.
P.
Sunthar
and
J. R.
Prakash
,
Macromolecules
38
,
617
(
2005
).
35.
M.
Fixman
,
Macromolecules
19
,
1204
(
1986
).
36.
T.
Geyer
and
U.
Winter
,
J. Chem. Phys.
130
,
114905
(
2009
).
37.
A.
Banchio
and
J.
Brady
,
J. Chem. Phys.
118
,
10323
(
2003
).
38.
D.
Saintillan
,
E.
Darve
, and
E. S. G.
Shaqfeh
,
Macromolecules
17
,
33301
(
2005
).
39.
J. P.
Hernandez-Ortiz
,
J. J.
de Pablo
, and
M. D.
Graham
,
Phys. Rev. Lett.
98
,
140602
(
2007
).
40.
D. O.
Martinez
,
W. H.
Matthaeus
,
S.
Chen
, and
D. C.
Montgomery
,
Phys. Fluids
6
,
1285
(
1994
).
41.
K.
Mussawisade
,
M.
Ripoll
,
R. G.
Winkler
, and
G.
Gompper
,
J. Chem. Phys.
123
,
144905
(
2005
).
42.
W.
Jiang
,
J.
Huang
,
Y.
Wang
, and
M.
Laradji
,
J. Chem. Phys.
126
,
044901
(
2007
).
43.
G.
Giupponi
,
G.
De Fabritiis
, and
P. V.
Coveney
,
J. Chem. Phys.
126
,
154903
(
2007
).
44.
S.
Litvinov
,
M.
Ellero
,
X.
Hu
, and
N. A.
Adams
,
Phys. Rev. E
77
,
066703
(
2008
).
45.
A. J. C.
Ladd
,
R.
Kekre
, and
J. E.
Butler
,
Phys. Rev. E
80
,
036704
(
2009
).
46.
H. C.
Öttinger
,
Stochastic Processes in Polymeric Fluids
(
Springer
,
Berlin
,
1996
).
47.
R.
Prabhakar
and
J. R.
Prakash
,
J. Non-Newtonian Fluid Mech.
116
,
163
(
2004
).
48.
J.
Rotne
and
S.
Prager
,
J. Chem. Phys.
50
,
4831
(
1969
).
49.
H.
Yamakawa
,
Modern Theory of Polymer Solutions
(
Harper & Row
,
New York
,
1971
).
50.
P. J.
Flory
,
Statistical Mechanics of Chain Molecules
(
Oxford University Press
,
New York
,
1988
).
51.
M.
Fixman
,
Macromolecules
14
,
1710
(
1981
).
52.
M.
Fixman
,
J. Chem. Phys.
78
,
1594
(
1983
).
53.
A.
Kopf
,
B.
Dünweg
, and
W.
Paul
,
J. Chem. Phys.
107
,
6945
(
1997
).
54.
P.
Ahlrichs
,
R.
Everaers
, and
B.
Dünweg
,
Phys. Rev. E
64
,
040501
(R) (
2001
).
55.
Y. -L.
Chen
,
H.
Ma
,
M. D.
Graham
, and
J. J.
de Pablo
,
Macromolecules
40
,
5978
(
2007
).
56.
Y. -L.
Chen
, personal communication (
2009
).
You do not currently have access to this content.