The role of the topology and its relation with the geometry of biopolymers under different physical conditions is a nontrivial and interesting problem. Aiming at understanding this issue for a related simpler system, we use Monte Carlo methods to investigate the interplay between writhe and knotting of ring polymers in good and poor solvents. The model that we consider is interacting self-avoiding polygons on the simple cubic lattice. For polygons with fixed knot type, we find a writhe distribution whose average depends on the knot type but is insensitive to the length N of the polygon and to solvent conditions. This “topological contribution” to the writhe distribution has a value that is consistent with that of ideal knots. The standard deviation of the writhe increases approximately as N in both regimes, and this constitutes a geometrical contribution to the writhe. If the sum over all knot types is considered, the scaling of the standard deviation changes, for compact polygons, to N0.6. We argue that this difference between the two regimes can be ascribed to the topological contribution to the writhe that, for compact chains, overwhelms the geometrical one, thanks to the presence of a large population of complex knots at relatively small values of N. For polygons with fixed writhe, we find that the knot distribution depends on the chosen writhe, with the occurrence of achiral knots being considerably suppressed for large writhe. In general, the occurrence of a given knot thus depends on a nontrivial interplay between writhe, chain length, and solvent conditions.

1.
J. D.
Watson
and
F. H.
Crick
,
Nature (London)
171
,
737
(
1953
).
2.
J. H.
White
,
Am. J. Math.
91
,
693
(
1969
).
3.
F. B.
Fuller
,
Proc. Natl. Acad. Sci. U.S.A.
68
,
815
(
1971
).
4.
W. R.
Bauer
,
Annu. Rev. Biophys. Bioeng.
7
,
287
(
1978
).
5.
S. Y.
Shaw
and
J. C.
Wang
,
Science
260
,
533
(
1993
).
6.
V. V.
Rybenkov
,
N. R.
Cozzarelli
, and
A. V.
Vologodskii
,
Proc. Natl. Acad. Sci. U.S.A.
90
,
5307
(
1993
).
7.
K.
Shishido
,
N.
Komiyama
, and
S.
Ikawa
,
J. Mol. Biol.
195
,
215
(
1987
).
8.
A. A.
Podtelezhnikov
,
N. R.
Cozzarelli
, and
A. V.
Vologodskii
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
12974
(
1999
).
9.
Y.
Burnier
,
J.
Dorier
, and
A.
Stasiak
,
Nucleic Acids Res.
36
,
4956
(
2008
).
10.
E. J.
Janse van Rensburg
,
E.
Orlandini
,
D. W.
Sumners
,
M. C.
Tesi
, and
S. G.
Whittington
,
J. Knot Theory Ramif.
6
,
31
(
1997
).
11.
V.
Katritch
,
J.
Bednar
,
D.
Michoud
,
J.
Dubochet
, and
A.
Stasiak
,
Nature (London)
384
,
142
(
1996
).
12.
Ideal Knots
, edited by
A.
Stasiak
,
V.
Katrich
, and
L. H.
Kauffman
(
World Scientific
,
Singapore
,
1998
).
13.
A.
Flammini
and
A.
Stasiak
,
Proc. R. Soc. London, Ser. A
463
,
569
(
2007
).
14.
L. F.
Liu
,
J. L.
Davis
, and
R.
Calendar
,
Nucleic Acids Res.
9
,
3979
(
1981
).
15.
J. S.
Wolfson
,
G. L.
McHugh
,
D. C.
Hooper
, and
M. N.
Swartz
,
Nucleic Acids Res.
13
,
6695
(
1985
).
16.
M.
Isaksen
,
B.
Julien
,
R.
Calendar
, and
B. H.
Lindqvist
,
Methods Mol. Biol.
94
,
69
(
1999
).
17.
J.
Arsuaga
,
M.
Vázquez
,
S.
Trigueros
,
D.
Sumners
, and
J.
Roca
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
5373
(
2002
).
18.
J.
Arsuaga
,
M.
Vazquez
,
P.
McGuirk
,
S.
Trigueros
,
D.
Sumners
, and
J.
Roca
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
9165
(
2005
).
19.
K.
Murray
and
N. E.
Murray
,
Nature (London), New Biol.
243
,
134
(
1973
).
20.
V. V.
Rybenkov
,
C.
Ullsperger
,
A. V.
Vologodskii
, and
N. R.
Cozzarelli
,
Science
277
,
690
(
1997
).
21.
S.
Trigueros
and
J.
Roca
,
BMC Biotechnol.
7
,
94
(
2007
).
22.
T.
Blackstone
,
P.
McGuirk
,
C.
Laing
,
M.
Vazquez
,
J.
Roca
, and
J.
Arsuaga
,
Proceedings of the Conference on Knots in Kyoto 2007
(
Osaka University Press
,
Osaka
,
2009
), Chap. 18.
23.
C.
Vanderzande
,
Lattice Models of Polymers
(
Cambridge University Press
,
Cambridge
,
1998
).
24.
M. C.
Tesi
,
E. J.
Janse van Rensburg
,
E.
Orlandini
, and
S. G.
Whittington
,
J. Stat. Phys.
82
,
155
(
1996
).
25.
M. C.
Tesi
,
E. J.
Janse van Rensburg
,
E.
Orlandini
, and
S. G.
Whittington
,
J. Phys. A
29
,
2451
(
1996
).
26.
N.
Madras
and
G.
Slade
,
The Self-Avoiding Walk
(
Birkhäuser
,
Boston
,
1993
).
27.
P.
Grassberger
,
Phys. Rev. E
56
,
3682
(
1997
).
28.
M.
Baiesi
,
E.
Orlandini
, and
A. L.
Stella
,
Phys. Rev. Lett.
99
,
058301
(
2007
).
29.
R. C.
Lacher
and
D. W.
Sumners
, in
Computer Simulation of Polymers
, edited by
R.
Roe
(
Prentice-Hall
,
New York
,
1991
), pp.
365
373
.
30.
C.
Micheletti
,
D.
Marenduzzo
,
E.
Orlandini
, and
D. W.
Sumners
,
J. Chem. Phys.
124
,
064903
(
2006
).
31.
B.
Berg
and
D.
Foerster
,
Phys. Lett. B
106
,
323
(
1981
).
32.
C.
Aragão de Carvalho
,
S.
Caracciolo
, and
J.
Fröhlich
,
Nucl. Phys. B
215
,
209
(
1983
).
33.
C. C.
Adams
,
The Knot Book
(
Freeman
,
New York
,
1994
).
34.
J.
Hoste
and
M.
Thistlethwaite
(
1999
) (http://www.math.utk.edu/morwen/knotscape.html).
35.
C.
Micheletti
,
D.
Marenduzzo
,
E.
Orlandini
, and
D. W.
Sumners
,
Biophys. J.
95
,
3591
(
2008
).
36.
V.
Katritch
,
W. K.
Olson
,
P.
Pieranski
,
J.
Dubochet
, and
A.
Stasiak
,
Nature (London)
388
,
148
(
1997
).
37.
D.
Sumners
, talk given at the
San Francisco International Meeting on DNA Topology
, San Francisco,
2009
(unpublished).
38.
E. J.
Janse van Rensburg
,
E.
Orlandini
,
D. W.
Sumners
,
M. C.
Tesi
, and
S. G.
Whittington
,
J. Phys. A
26
,
L981
(
1993
).
39.
J.
Cantarella
,
D.
DeTurk
, and
H.
Gluck
,
Proceedings of the Conference on Low Dimensional Topology in Honor of the 70th Birthday of Joan Birman
(
Amer. Math. Soc. International
,
Sommerville, MA
,
2002
), Vol.
24
.
40.
E.
Orlandini
and
S.
Whittington
,
Rev. Mod. Phys.
79
,
611
(
2007
).
41.
Y.
Diao
,
J. Knot Theory Ramif.
2
,
413
(
1993
).
You do not currently have access to this content.