Electron transfer (ET) from a donor to an acceptor through an energetically close intermediary state on a midway molecule is a process found often in natural and artificial solar-energy capturing systems such as photosynthesis. This process has often been thought of in terms of opposing “superexchange” and “sequential or hopping” mechanisms, and the recent theory of Sumi and Kakitani (SK) [J. Phys. Chem. B105, 9603 (2001)] has shown an interpolation between these mechanisms. In their theory, however, dynamics governing the most interesting intermediary region between them has artificially been introduced by phenomenologies. The dynamics is played by decoherence among electronic states, their decay, and thermalization of phonons in the medium. The present work clarifies the dynamics on a microscopic basis by means of renormalization in electronic coupling among the states, and gives a complete unified expression of the rate constant of the ET. It merges to that given by the SK theory in the semiclassical approximation for phonons interacting with an electron transferred.

1.
As a review,
B.
Albinsson
and
J.
Martensson
,
J. Photochem. Photobiol. C
9
,
138
(
2008
).
2.
G.
Hartwich
,
G.
Bieser
,
T.
Langenbacher
,
P.
Muller
,
M.
Richter
,
A.
Ogrodnik
,
H.
Scheer
, and
M. E.
Michel-Beyerle
,
Biophys. J.
71
,
A8
(
1997
);
M.
Bixon
and
J.
Jortner
, in
Electron Transfer from Isolated Molecules to Biomolecules
,
Advanced in Chemical Physics 106
Vol.
1
, edited by
J.
Jortner
(
Wiley
,
New York
,
1999
), p.
35
.
3.
B.
Giese
,
J.
Amaudrut
,
A. K.
Kohler
,
M.
Spormann
, and
S.
Wessely
,
Nature (London)
412
,
318
(
2001
).
4.
F. D.
Lewis
,
H. H.
Zhu
,
P.
Daublain
,
T.
Fiebig
,
M.
Raytchev
,
Q.
Wang
, and
V.
Shafirovich
,
J. Am. Chem. Soc.
128
,
791
(
2006
).
5.
B. P.
Paulson
,
J. R.
Miller
,
W.
Gan
, and
G. J.
Closs
,
J. Am. Chem. Soc.
127
,
4860
(
2005
).
6.
E. A.
Weiss
,
M. J.
Tauber
,
R. F.
Kelley
,
M. J.
Ahrens
,
M. A.
Ratner
, and
M. R.
Wasielewski
,
J. Am. Chem. Soc.
127
,
11842
(
2005
).
7.
M. U.
Winters
,
K.
Pettersson
,
J.
Martensson
, and
B.
Albinsson
,
Chem.-Eur. J.
11
,
562
(
2005
).
8.
M.
Bixon
,
J.
Jortner
, and
M. E.
Michel-Beyerle
,
Biochim. Biophys. Acta
1056
,
301
(
1991
).
9.
Y.
Hu
and
S. J.
Mukamel
,
Chem. Phys.
91
,
6973
(
1989
);
O.
Kuhn
,
V.
Rupasov
, and
S. J.
Mukamel
,
Chem. Phys.
104
,
5821
(
1996
).
10.
H.
Sumi
and
T.
Kakitani
,
Chem. Phys. Lett.
252
,
85
(
1996
).
11.
H.
Sumi
and
T.
Kakitani
,
J. Phys. Chem. B
105
,
9603
(
2001
);
H.
Sumi
and
T.
Kakitani
,
J. Phys. Chem. B
113
,
12852
(E) (
2009
).
12.
J.
Jortner
,
M.
Bixon
,
A. A.
Voityuk
, and
N.
Rosch
,
J. Phys. Chem. A
106
,
7599
(
2002
).
13.
C.
Lambert
,
G.
Noll
, and
J.
Schelter
,
Nature Mater.
1
,
69
(
2002
).
14.
E.
Sim
,
J. Phys. Chem. B
109
,
11829
(
2005
).
15.
L.
Muhlbacher
,
J.
Ankerhold
, and
C.
Escher
,
J. Chem. Phys.
121
,
12696
(
2004
).
16.
X. F.
Wang
and
T.
Chakraborty
,
Phys. Rev. Lett.
97
,
106602
(
2006
).
17.
A. A.
Kornyshev
,
A. M.
Kuznetsov
, and
J.
Ulstrup
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
6799
(
2006
).
18.
Y.
Sun
,
Y. H
Chen
,
Y. Z.
Li
,
Y. Q.
Li
, and
F. C.
Ma
,
Chin. J. Chem.
26
,
1011
(
2008
).
19.
R. H.
Goldsmith
,
O.
DeLeon
,
T. M.
Wilson
, and
D.
Finkelstein-Shapiro
,
J. Phys. Chem. A
112
,
4410
(
2008
).
20.
K.
Saito
,
T.
Kikuchi
,
K.
Mukai
, and
H.
Sumi
,
Phys. Chem. Chem. Phys.
11
,
5290
(
2009
).
21.
H.
Sumi
,
J. Phys. Chem. B
106
,
13370
(
2002
).
22.
H.
Sumi
,
J. Phys. Chem. B
108
,
11792
(
2004
).
23.
K.
Mukai
,
K.
Saito
, and
H.
Sumi
,
Photosynthesis: Fundamental Aspects to Global Perspective, International Society of Photosynthesis, edited by A. van der Est and D. Bruce
(
Allen Press, Lawrence
,
2005
), p.
329
.
24.
K.
Saito
,
K.
Mukai
, and
H.
Sumi
,
Chem. Phys.
326
,
221
(
2006
).
25.
K.
Saito
,
K.
Mukai
, and
H.
Sumi
, in
Photosynthesis. Energy from the Sun
,
Proceedings of the 14th International Congress on Photosynthesis Research 2007
, edited by
J. F.
Allen
 et al (
Springer
,
New York
,
2008
), p.
177
.
26.
A.
Kimura
and
T.
Kakitani
,
Chem. Phys. Lett.
298
,
241
(
1998
).
27.
H.
Sumi
, in
Electron Transfer in Chemistry
,
Principles, Theories, Techniques and Methods
Vol.
1
, edited by
V.
Balzani
(
Wiley-VCH
,
Weinheim
,
2001
), p.
64
.
28.
Y. L.
Kharkats
,
A.
Kuznestov
, and
J.
Ulstrup
,
J. Phys. Chem.
99
,
13545
(
1995
).
29.
R.
Kubo
,
J. Phys. Soc. Jpn.
17
,
1100
(
1962
).
30.
From Eq. (5.7), K¯ depends on μ and σ through ρm(s;τ;μ,σ). Since the dependence of ρm(s;τ;μ,σ) in Eq. (5.8) on μ and σ is the same as Wa,d(4) of Eq. (3.12), K¯ as a function on μ and σ should behave like Wa,d(4), which peaks at μ=0 and σ=0 with widths σ0 and μ0 in σ and μ, respectively, and decays to zero for |μ|μ0 and |σ|σ0 as mentioned in the text. Generally, for a function f(x) with a positive peak, the width of the pit of exp(cf(x)) with a positive number c is always larger than that of f(x). Therefore, the exponential of (A1) as a function on μ and σ has widths much larger than μ0 and σ0, and thus it can be regarded as nearly constant for |μ|μ0 and |σ|σ0 in comparison with Wa,d(4).
31.
A.
Messiah
,
Mecanique Quantique
(
Dunod
,
Paris
,
1959
).
32.
Y.
Toyozawa
,
Optical Processes in Solids
(
Cambridge University Press
,
Cambridge
,
2003
).
33.
S.
Mukamel
,
Principal of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
You do not currently have access to this content.