Using the mean-field diffuse-interface model for liquid-vapor system and employing the numerical string method, we study the critical nuclei involved in the prewetting transitions on curved substrates. We first introduce three distinct kinds of critical nuclei, namely, the disklike, bandlike, and layerlike ones, which respectively correspond to three possible growth modes of wetting films. We show the disklike growth mode to be the only mode for infinite planar substrates. We then turn to cylindrical and spherical substrates, the two simplest but most important geometries in the real world. We focus on the critical nuclei of finite size, through which the wetting films may be formed with finite thermodynamic probabilities. It is shown that the disklike growth mode is always the most probable for wetting film nucleation and growth as long as a disklike critical nucleus exists. It is also shown that on a cylindrical substrate, the disklike critical nucleus can no longer exist if the substrate radius is smaller than some critical value, comparable to the radius of the disklike critical nucleus on planar substrate. We find that on a cylindrical substrate whose radius is below the critical value, the nucleation and growth of a wetting film can only occur through the bandlike critical nucleus. It is worth emphasizing that the results concerning the bandlike and layerlike growth modes can only be obtained from the diffuse-interface model, beyond the macroscopic description based on the line and surface tensions.

1.
J. W.
Cahn
,
J. Chem. Phys.
66
,
3667
(
1977
).
2.
H.
Nakanishi
and
M. E.
Fisher
,
Phys. Rev. Lett.
49
,
1565
(
1982
).
3.
D.
Bonn
and
D.
Ross
,
Rep. Prog. Phys.
64
,
1085
(
2001
).
4.
T. F.
Meister
and
D. M.
Kroll
,
Phys. Rev. A
31
,
4055
(
1985
).
5.
S.
Dietrich
and
M.
Schick
,
Phys. Rev. B
33
,
4952
(
1986
).
6.
S.
Dhawan
,
M. E.
Reimel
,
L. E.
Scriven
, and
H. T.
Davis
,
J. Chem. Phys.
94
,
4479
(
1991
).
7.
A.
Patrykiejew
and
S.
Sokołowski
,
J. Phys. Chem. B
103
,
4466
(
1999
).
8.
R.
Bausch
and
R.
Blossey
,
Europhys. Lett.
14
,
125
(
1991
).
9.
R.
Bausch
and
R.
Blossey
,
Phys. Rev. E
48
,
1131
(
1993
).
10.
R.
Bausch
,
R.
Blossey
, and
M. A.
Burschka
,
J. Phys. A
27
,
1405
(
1994
).
11.
R.
Bausch
and
R.
Blossey
,
Phys. Rev. E
50
,
R1759
(
1994
).
12.
E. M.
Blokhuis
,
Phys. Rev. E
51
,
4642
(
1995
).
13.
I.
Schmidt
and
K.
Binder
,
Z. Phys. B: Condens. Matter
67
,
369
(
1987
).
15.
D.
Bonn
,
H.
Kellay
, and
G. H.
Wegdam
,
Phys. Rev. Lett.
69
,
1975
(
1992
).
16.
D.
Bonn
and
J. O.
Indekeu
,
Phys. Rev. Lett.
74
,
3844
(
1995
).
17.
D.
Bonn
,
E.
Bertrand
,
J.
Meunier
, and
R.
Blossey
,
Phys. Rev. Lett.
84
,
4661
(
2000
).
18.
R.
Hołyst
and
A.
Poniewierski
,
Phys. Rev. B
36
,
5628
(
1987
).
19.
M. P.
Gelfand
and
R.
Lipowsky
,
Phys. Rev. B
36
,
8725
(
1987
).
20.
P.
Upton
,
J.
Indekeu
, and
J.
Yeomans
,
Phys. Rev. B
40
,
666
(
1989
).
21.
T.
Gil
and
L. V.
Mikheev
,
Phys. Rev. E
52
,
772
(
1995
).
22.
M. C.
Stewart
and
R.
Evans
,
Phys. Rev. E
71
,
011602
(
2005
).
23.
A. O.
Parry
,
C.
Rascón
, and
L.
Morgan
,
J. Chem. Phys.
124
,
151101
(
2006
).
24.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
Phys. Rev. B
66
,
052301
(
2002
).
25.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
126
,
164103
(
2007
).
26.
T.
Qian
,
W.
Ren
, and
P.
Sheng
,
Phys. Rev. B
72
,
014512
(
2005
).
27.
C.
Qiu
and
T.
Qian
,
Phys. Rev. B
77
,
174517
(
2008
);
C.
Qiu
and
T.
Qian
,
Phys. Rev. B
79
,
054513
(
2009
).
28.
C.
Qiu
,
T.
Qian
, and
W.
Ren
,
J. Chem. Phys.
129
,
154711
(
2008
).
You do not currently have access to this content.