The exact nature of the hole traps reported deep in the band gap of Cu2O has been a topic of vigorous debate, with copper vacancies and oxygen interstitials both having been proposed as the relevant defects. In this article, the electronic structure of acceptor-forming defects in Cu2O, namely, copper vacancies and oxygen interstitials, is investigated using generalized gradient approximation (GGA) and GGA corrected for on-site Coulombic interactions (GGA+U). GGA produces notionally semimetallic defect complexes, which is not consistent with the experimentally known polaronic nature of conduction in Cu2O. GGA+U also predicts a semimetallic defect complex for the “simple” copper vacancy but predicts the “split” vacancy and both oxygen interstitials are characterized by localized polarons, with distinct single particle levels found in the band gap. For both methods, however, the positions of calculated transition levels are inconsistent with experimental ionization levels. Hence neither GGA nor GGA+U are successful in modeling p-type defects in Cu2O.

1.
S.
Nikitine
,
J. B.
Grun
, and
M.
Sieskind
,
J. Phys. Chem. Solids
17
,
292
(
1961
).
2.
L.
Papadimitriou
,
N.
Economou
, and
D.
Trivich
,
Sol. Cells
3
,
73
(
1981
).
3.
S.
Kale
,
S.
Ogale
,
S.
Shinde
,
M.
Sahasrabuddhe
,
V.
Kulkarni
,
R.
Greene
, and
T.
Venkatesan
,
Appl. Phys. Lett.
82
,
2100
(
2003
).
4.
M. A.
Marquardt
,
N. A.
Ashmore
, and
D. P.
Cann
,
Thin Solid Films
496
,
146
(
2006
).
5.
A.
Kudo
,
H.
Yanagi
,
H.
Hosono
, and
H.
Kawazoe
,
Appl. Phys. Lett.
73
,
220
(
1998
).
6.
J. P.
Hu
,
D. J.
Payne
,
R. G.
Egdell
,
P. A.
Glans
,
T.
Learmonth
,
K. E.
Smith
,
J.
Guo
, and
N. M.
Harrison
,
Phys. Rev. B
77
,
155115
(
2008
).
7.
S. L.
Hulbert
,
B. A.
Bunker
,
F. C.
Brown
, and
P.
Pianetta
,
Phys. Rev. B
30
,
2120
(
1984
).
8.
A. N.
Banerjee
and
K. K.
Chattopadhyay
,
Prog. Cryst. Growth Charact. Mater.
50
,
52
(
2005
).
9.
H.
Yanagi
,
S.
Inoue
,
K.
Ueda
,
H.
Kawazoe
,
H.
Hosono
, and
N.
Hamada
,
J. Appl. Phys.
88
,
4159
(
2000
).
10.
A.
Önsten
,
M.
Månsson
,
T.
Claesson
,
T.
Muro
,
T.
Matsushita
,
T.
Nakamura
,
T.
Kinoshita
,
U. O.
Karlsson
, and
O.
Tjernberg
,
Phys. Rev. B
76
,
115127
(
2007
).
11.
R.
Laskowski
,
P.
Blaha
, and
K.
Schwarz
,
Phys. Rev. B
67
,
075102
(
2003
).
12.
H.
Kawazoe
,
H.
Yanagi
,
K.
Ueda
, and
H.
Hosono
,
MRS Bull.
25
,
28
(
2000
).
13.
A.
Filippetti
and
V.
Fiorentini
,
Phys. Rev. B
72
,
035128
(
2005
).
14.
A.
Buljan
,
M.
Llunell
,
E.
Ruiz
, and
P.
Alemany
,
Chem. Mater.
13
,
338
(
2001
).
15.
R. S.
Toth
,
R.
Kilkson
, and
D.
Trivich
,
Phys. Rev.
122
,
482
(
1961
).
16.
J.
Maluenda
,
R.
Farhi
, and
G.
Petot-Ervas
,
J. Phys. Chem. Solids
42
,
911
(
1981
).
17.
N. L.
Peterson
and
C. L.
Wiley
,
J. Phys. Chem. Solids
45
,
281
(
1984
).
18.
L. C.
Bourne
,
P. Y.
Yu
,
A.
Zettl
, and
M. L.
Cohen
,
Phys. Rev. B
40
,
10973
(
1989
).
19.
A. E.
Rakhshani
,
J. Appl. Phys.
69
,
2290
(
1991
).
20.
G. P.
Pollack
and
D.
Trivich
,
J. Appl. Phys.
46
,
163
(
1975
).
21.
A. E.
Rakhshani
,
J. Appl. Phys.
69
,
2365
(
1991
).
22.
A. E.
Rakhshani
,
Y.
Makdisi
, and
X.
Mathew
,
J. Mater. Sci.: Mater. Electron.
8
,
207
(
1997
).
23.
R.
Garuthara
and
W.
Siripala
,
J. Lumin.
121
,
173
(
2006
).
24.
N.
Kikuchi
,
K.
Tonooka
, and
E.
Kusano
,
Vacuum
80
,
756
(
2006
).
25.
A. E.
Rakhshani
,
Y.
Makdisi
, and
X.
Mathew
,
Thin Solid Films
288
,
69
(
1996
).
26.
L.
Papadimitriou
,
Solid-State Electron.
36
,
431
(
1993
).
27.
G. K.
Paul
,
Y.
Nawa
,
H.
Sato
,
T.
Sakuri
, and
K.
Akimoto
,
Appl. Phys. Lett.
88
,
141901
(
2006
).
28.
L.
Papadimitriou
,
C. A.
Dimitriadis
, and
L.
Dozsa
,
Solid-State Electron.
31
,
1477
(
1988
).
29.
L.
Papadimitriou
,
Solid State Commun.
71
,
181
(
1989
).
30.
O.
Porat
and
I.
Riess
,
Solid State Ionics
81
,
29
(
1995
).
31.
M.
O’Keeffe
and
W. J.
Moore
,
J. Chem. Phys.
36
,
3009
(
1962
).
32.
J. W.
Hodby
,
T. E.
Jenkins
,
C.
Schwab
,
H.
Tamura
, and
D.
Trivich
,
J. Phys. C
9
,
1429
(
1976
).
33.
J. H.
Park
and
K.
Natesan
,
Oxid. Met.
39
,
411
(
1993
).
34.
A.
Bose
,
S.
Basu
,
S.
Banerjee
, and
D.
Chakravorty
,
J. Appl. Phys.
98
,
074307
(
2005
).
35.
T.
Mahalingam
,
J. S. P.
Chitra
,
S.
Rajendran
, and
P. J.
Sebastian
,
Semicond. Sci. Technol.
17
,
565
(
2002
).
36.
A. F.
Wright
and
J. S.
Nelson
,
J. Appl. Phys.
92
,
5849
(
2002
).
37.
M.
Nolan
and
S. D.
Elliot
,
Phys. Chem. Chem. Phys.
8
,
5350
(
2006
).
38.
H.
Raebiger
,
S.
Lany
, and
A.
Zunger
,
Phys. Rev. B
76
,
045209
(
2007
).
39.
A.
Soon
,
X. Y.
Cui
,
B.
Delley
,
S. -H.
Wei
, and
C.
Stampfl
,
Phys. Rev. B
79
,
035205
(
2009
).
40.
D.
Redfield
and
R. H.
Bube
,
Photoinduced Defects in Semiconductors
(
Cambridge Univeristy Press
,
Cambridge
,
1996
).
41.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
42.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
43.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
44.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
45.
J.
Ghijsen
,
L. H.
Tjeng
,
J.
van Elp
,
H.
Eskes
,
J.
Westerink
,
G. A.
Sawatzky
, and
M. T.
Czyzyk
,
Phys. Rev. B
38
,
11322
(
1988
).
46.
D. O.
Scanlon
,
A.
Walsh
,
B. J.
Morgan
,
G. W.
Watson
,
D. J.
Payne
, and
R. G.
Egdell
,
Phys. Rev. B
79
,
035101
(
2009
).
47.
T.
Arnold
,
D. J.
Payne
,
A.
Bourlange
,
J. P.
Hu
,
R. G.
Egdell
,
L. F. J.
Piper
,
L.
Colakerol
,
A.
De Masi
,
P. A.
Glans
,
T.
Learmonth
,
K. E.
Smith
,
J.
Guo
,
D. O.
Scanlon
,
A.
Walsh
,
B. J.
Morgan
, and
G. W.
Watson
,
Phys. Rev. B
79
,
075102
(
2009
).
48.
B. J.
Morgan
and
G. W.
Watson
,
Surf. Sci.
601
,
5034
(
2007
).
49.
D. O.
Scanlon
,
A.
Walsh
,
B. J.
Morgan
, and
G. W.
Watson
,
J. Phys. Chem. C
112
,
9903
(
2008
).
50.
R.
Coquet
and
D. J.
Willock
,
Phys. Chem. Chem. Phys.
7
,
3819
(
2005
).
51.
A.
Walsh
,
Y.
Yan
,
M. M.
Al-Jassim
, and
S. H.
Wei
,
J. Phys. Chem. C
112
,
12044
(
2008
).
52.
M.
Nolan
and
G. W.
Watson
,
J. Chem. Phys.
125
,
144701
(
2006
).
53.
D. O.
Scanlon
,
A.
Walsh
,
B. J.
Morgan
,
M.
Nolan
,
J.
Fearon
, and
G. W.
Watson
,
J. Phys. Chem. C
111
,
7971
(
2007
).
54.
F. D.
Murnaghan
,
Proc. Natl. Acad. Sci. U.S.A.
30
,
244
(
1944
).
55.
J. G.
Stark
and
H. G.
Wallace
,
Chemistry Data Book
(
Murray
,
London
,
1997
).
56.
C. G.
Van de Walle
and
J.
Neugebauer
,
J. Appl. Phys.
95
,
3851
(
2004
).
57.
R. M.
Nieminen
,
Theory of Defects in Semiconductors
,
Topics in Applied Physics
(
Springer
,
New York
,
2007
).
58.
G. K.
Paul
,
R.
Ghosh
,
K.
Bera
,
S. S.
Bandyopadhyay
,
T.
Sakurai
, and
K.
Akimoto
,
Chem. Phys. Lett.
463
,
117
(
2008
).
59.
A.
Werner
and
H. D.
Hochheimer
,
Phys. Rev. B
25
,
5929
(
1982
).
60.
B. J.
Morgan
,
D. O.
Scanlon
, and
G. W.
Watson
,
e-J. Surf. Sci. Nanotechnol.
7
,
389
(
2009
).
61.
O. M.
Madelung
,
Semiconductors: Data Handbook
(
Springer
,
Berlin
,
2004
).
62.
D. O.
Scanlon
,
B. J.
Morgan
,
G. W.
Watson
, and
A.
Walsh
,
Phys. Rev. Lett.
103
,
086405
(
2009
).
You do not currently have access to this content.