When a set of three states is coupled with each other but shows negligibly weak interaction with other states of the Hilbert space, these states form a sub-Hilbert space. In case of such subspace [J. Chem. Phys.124, 074101 (2006)], (a) the adiabatic-diabatic transformation (ADT) condition, A+τA=0 [Chem. Phys. Lett.35, 112 (1975)], provides the explicit forms of the nonadiabatic coupling (NAC) elements in terms of electronic basis function angles, namely, the ADT angles, and (b) those NAC terms satisfy the so-called curl conditions [Chem. Phys. Lett.35, 112 (1975)], which ensure the removal of the NAC elements [could be singular also at specific point(s) or along a seam in the configuration space] during the ADT to bring the diabatic representation of the nuclear Schrödinger equation with a smooth functional form of coupling elements among the electronic states. Since the diabatic to adiabatic representation of the Hamiltonian is related through the same unitary transformation (A+τA=0), it could be quite interesting to explore the nature of the nonadiabatic coupling terms starting from a diabatic Hamiltonian and, thereafter, to formulate the extended Born–Oppenheimer (EBO) equation for those adiabatic states transformed from diabatic ones. We consider a three-state diabatic potential matrix constructed for the excited states of Na3 cluster [J. Chem. Phys.88, 6068 (1988)] at the pseudo-Jahn–Teller model situation, which can reproduce experimentally measured vibrationally resolved absorption lines [Surf. Sci.156, 770 (1985)] with appropriate choice of coupling parameters, analytically calculate the nonadiabatic coupling elements along with their curls, and numerically evaluate the ADT angles to explore the nature of its nonadiabaticity. While formulating the single surface beyond the BO equation, our theoretical derivation demonstrates that the existence of zero curls of the NAC terms is a necessity. Indeed, when the energy gap between the third state (12A1/22A1) and the doubly degenerate states (22E/32E) of the model Hamiltonian for Na3 cluster is considered to be either identically or approximately zero, the curl for each NAC element naturally approaches zero, leading to a theoretically valid EBO equation. We demonstrate the numerical validity of the EBO equation by calculating the nonadiabatic effects on the photoabsorption spectrum starting with the initial wave function located on the ground electronic state and compare with the corresponding diabatic spectrum when the three states are either degenerate at a point or approaching to form three-state degeneracy at the same point. Finally, we calculate the vibrational eigenspectrum of the ground adiabatic state by using (so to say) theoretically and numerically valid EBO equation to compare with those experimentally measured and BO/geometric phase calculated spectra (Tables I-III).

1.
M.
Born
and
J. R.
Oppenheimer
,
Ann. Phys. (Leipzig)
84
,
457
(
1927
).
2.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
New York
,
1954
).
3.
G.
Herzberg
and
H. C.
Longuet-Higgins
,
Discuss. Faraday Soc.
35
,
77
(
1963
).
4.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
70
,
2284
(
1979
).
5.
M.
Baer
,
Beyond Born—Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms
(
Wiley-Interscience
,
Hoboken
,
2006
).
6.
H.
Hellmann
,
Einfuhrang in die Quantenchemie
(
Deutiche
,
Leipzig
,
1937
);
7.
S. T.
Epstein
,
Am. J. Phys.
22
,
613
(
1954
).
8.
M.
Baer
and
G. D.
Billing
,
The Role of Degenerate States in Chemistry
,
Advanced Chemical Physics
Vol.
124
(
Wiley
,
New York
,
2002
).
9.
M.
Baer
and
R.
Englman
,
Mol. Phys.
75
,
293
(
1992
).
10.
H. C.
Longuet-Higgins
,
Adv. Spectrosc. (NY)
2
,
429
(
1961
).
11.
H. C.
Longuet-Higgins
,
Proc. R. Soc. London, Ser. A
344
,
147
(
1975
).
12.
M. S.
Child
,
Adv. Chem. Phys.
124
,
1
(
2002
);
D. E.
Manolopoulos
and
M. S.
Child
,
Phys. Rev. Lett.
82
,
2223
(
1999
).
13.
C. A.
Mead
,
J. Chem. Phys.
72
,
3839
(
1980
).
14.
B.
Lepetit
and
A.
Kuppermann
,
Chem. Phys. Lett.
166
,
581
(
1990
);
A.
Kuppermann
and
Y. -S. M.
Wu
,
Chem. Phys. Lett.
241
,
229
(
1995
).
15.
B.
Kendrick
and
R.
T Pack
,
J. Chem. Phys.
104
,
7475
(
1996
);
B.
Kendrick
,
J. Chem. Phys.
112
,
5679
(
2000
);
B.
Kendrick
,
J. Chem. Phys.
118
,
10502
(
2003
).
16.
J. C.
Juanes-Marcos
and
S. C.
Althorpe
,
Faraday Discuss.
127
,
115
(
2004
);
S. C.
Althorpe
,
J. Chem. Phys.
124
,
084105
(
2006
).
17.
R.
Baer
,
D.
Charutz
,
R.
Kosloff
, and
M.
Baer
,
J. Chem. Phys.
105
,
9141
(
1996
).
18.
S.
Adhikari
and
G. D.
Billing
,
J. Chem. Phys.
111
,
40
(
1999
).
20.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
77
,
6090
(
1982
).
21.
B. K.
Kendrick
,
C. A.
Mead
, and
D. G.
Truhlar
,
Chem. Phys.
277
,
31
(
2002
).
22.
N.
Matsunaga
and
D. R.
Yarkony
,
Mol. Phys.
93
,
79
(
1998
).
23.
D. R.
Yarkony
,
J. Chem. Phys.
105
,
10456
(
1996
).
24.
M.
Baer
,
T.
Vértesi
,
G. J.
Halász
,
A.
Vibok
, and
S.
Suhai
,
Faraday Discuss.
127
,
337
(
2004
).
25.
R. G.
Sadygov
and
D. R.
Yarkony
,
J. Chem. Phys.
109
,
20
(
1998
).
26.
R.
Abrol
and
A.
Kuppermann
,
J. Chem. Phys.
116
,
1035
(
2002
);
27.
M.
Baer
,
G.
Niedner-Schatteburg
, and
J. P.
Toennies
,
J. Chem. Phys.
91
,
4169
(
1989
);
M.
Baer
,
C. -L.
Liao
,
R.
Xu
,
G. D.
Flesch
,
S.
Nourbaksh
, and
C. Y.
Ng
,
J. Chem. Phys.
93
,
4845
(
1990
);
I.
Last
,
M.
Gilibert
, and
M.
Baer
,
J. Chem. Phys.
107
,
1451
(
1997
).
28.
F.
Aguillon
,
M.
Sizun
,
V.
Sidis
,
G. D.
Billing
, and
N.
Markovic
,
J. Chem. Phys.
104
,
4530
(
1996
);
M.
Sizun
,
F.
Aguillon
,
V.
Sidis
,
V.
Zenevich
,
G. D.
Billing
, and
N.
Markovic
,
Chem. Phys.
209
,
327
(
1996
);
D.
Grimbert
,
V.
Sidis
, and
V.
Cobut
,
J. Chem. Phys.
108
,
6331
(
1998
).
29.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
30.
Y. -S.
Wu
and
A.
Kuppermann
,
Chem. Phys. Lett.
235
,
105
(
1995
).
31.
G. D.
Billing
and
N.
Markovic
,
J. Chem. Phys.
99
,
2674
(
1993
).
32.
X.
Wu
,
R. E.
Wyatt
, and
M.
D’mello
,
J. Chem. Phys.
101
,
2953
(
1994
).
33.
B. H.
Lengsfield
and
D. R.
Yarkony
, in
State Selected and State-to-State Ion-Molecule Reaction Dynamics: Part 2, Theory
, edited by
M.
Baer
and
C. Y.
Ng
(
Wiley
,
New York
,
1992
), Vol.
82
, p.
1
.\
34.
J.
Schon
and
H.
Köppel
,
J. Chem. Phys.
103
,
9292
(
1995
).
35.
V.
Sidis
, in
State Selected and State-to-State Ion-Molecule Reaction Dynamics: Part 2, Theory
, edited by
M.
Baer
and
C. Y.
Ng
(
Wiley
,
New York
,
1992
), Vol.
82
, p.
73
.
36.
A. J. C.
Varandas
,
J.
Tennyson
, and
J. M.
Murrel
,
Chem. Phys. Lett.
61
,
431
(
1979
);
A. J. C.
Varandas
and
H. G.
Yu
,
Chem. Phys. Lett.
259
,
336
(
1996
).
37.
H. -J.
Werner
and
W.
Meyer
,
J. Chem. Phys.
74
,
5802
(
1981
).
38.
K.
Ruedenberg
and
G. J.
Atchity
,
J. Chem. Phys.
99
,
3799
(
1993
).
39.
A. J.
Dobbyn
and
P. J.
Knowels
,
Mol. Phys.
91
,
1107
(
1997
).
40.
A.
Alijah
and
E. E.
Nikitin
,
Mol. Phys.
96
,
1399
(
1999
).
41.
T.
Romero
,
A.
Aguilar
, and
F. X.
Gadea
,
J. Chem. Phys.
110
,
6219
(
1999
).
42.
M.
Baer
and
R.
Englman
,
Chem. Phys. Lett.
265
,
105
(
1997
).
43.
M.
Baer
,
J. Chem. Phys.
107
,
10662
(
1997
).
44.
D. M.
Charutz
,
R.
Baer
, and
M.
Baer
,
Chem. Phys. Lett.
265
,
629
(
1997
).
45.
A. J. C.
Varandas
and
Z. R.
Xu
,
J. Chem. Phys.
112
,
2121
(
2000
).
46.
M.
Baer
,
S. H.
Lin
,
A.
Alijah
,
S.
Adhikari
, and
G. D.
Billing
,
Phys. Rev. A
62
,
032506
(
2000
).
47.
S.
Adhikari
,
G. D.
Billing
,
A.
Alijah
,
S. H.
Lin
, and
M.
Baer
,
Phys. Rev. A
62
,
032507
(
2000
).
48.
B.
Sarkar
and
S.
Adhikari
,
J. Chem. Phys.
124
,
074101
(
2006
).
49.
B.
Sarkar
and
S.
Adhikari
,
Indian J. Phys.
81
,
925
(
2007
).
50.
B.
Sarkar
and
S.
Adhikari
,
Int. J. Quantum Chem.
109
,
650
(
2009
).
51.
B.
Sarkar
and
S.
Adhikari
,
J. Phys. Chem. A
112
,
9868
(
2008
).
52.
F.
Cocchini
,
T. H.
Upton
, and
W.
Andreoni
,
J. Chem. Phys.
88
,
6068
(
1988
).
53.
A.
Alijah
and
M.
Baer
,
J. Phys. Chem. A
104
,
389
(
2000
).
54.
R.
Meiswinkel
and
H.
Köppel
,
Chem. Phys.
144
,
117
(
1990
).
55.
M.
Mayer
,
L. S.
Cederbaum
, and
H.
Köppel
,
J. Chem. Phys.
104
,
8932
(
1996
).
56.
T.
Vértesi
,
Á.
Vibók
,
G. J.
Halász
, and
M.
Baer
,
J. Chem. Phys.
121
,
4000
(
2004
).
58.
G.
Halász
,
Á.
Vibók
,
A. M.
Mebel
, and
M.
Baer
,
J. Chem. Phys.
118
,
3052
(
2003
).
59.
T.
Verteśi
,
Á.
Vibók
,
G.
Halász
,
A.
Yahalom
,
R.
Englman
, and
M.
Baer
,
J. Phys. Chem. A
107
,
7189
(
2003
).
60.
Z. H.
Top
and
M.
Baer
,
J. Chem. Phys.
66
,
1363
(
1977
).
61.
G.
Delacrétaz
and
L.
Wöste
,
Surf. Sci.
156
,
770
(
1985
).
62.
G.
Delacrétaz
,
E. R.
Grant
,
R. L.
Whetten
,
L.
Wöste
, and
J. W.
Zwanziger
,
Phys. Rev. Lett.
56
,
2598
(
1986
).
63.
P.
Puzari
,
B.
Sarkar
, and
S.
Adhikari
,
J. Chem. Phys.
121
,
707
(
2004
).
64.
B. K.
Kendrick
,
Phys. Rev. Lett.
79
,
2431
(
1997
).
You do not currently have access to this content.