We study structural and thermophysical properties of a one-dimensional classical fluid made of penetrable spheres interacting via an attractive square-well potential. Penetrability of the spheres is enforced by reducing from infinite to finite the repulsive energy barrier in the pair potentials As a consequence, an exact analytical solution is lacking even in one dimension. Building upon previous exact analytical work in the low-density limit [A. Santos, R. Fantoni, and A. Giacometti, Phys. Rev. E77, 051206 (2008)], we propose an approximate theory valid at any density and in the low-penetrable regime. By comparison with specialized Monte Carlo simulations and integral equation theories, we assess the regime of validity of the theory. We investigate the degree of inconsistency among the various routes to thermodynamics and explore the possibility of a fluid-fluid transition. Finally we locate the dependence of the Fisher–Widom line on the degree of penetrability. Our results constitute the first systematic study of penetrable spheres with attractions as a prototype model for soft systems.

1.
J. -L.
Barrat
and
J. -P.
Hansen
,
Basic Concepts for Simple and Complex Liquids
(
Cambridge University Press
,
Cambridge
,
2003
).
3.
M.
Watzlawek
,
C. N.
Likos
, and
H.
Löwen
,
Phys. Rev. Lett.
82
,
5289
(
1999
).
4.
M.
Ballauff
and
C. N.
Likos
,
Angew. Chem., Int. Ed.
43
,
2998
(
2004
).
5.
Z. W.
Salsburg
,
R. W.
Zwanzig
, and
J. G.
Kirkwood
,
J. Chem. Phys.
21
,
1098
(
1953
).
6.
See, e.g.,
R.
Fantoni
, Ph.D. thesis,
University of Trieste
,
2003
, and references therein.
7.
Al.
Malijevský
and
A.
Santos
,
J. Chem. Phys.
124
,
074508
(
2006
).
8.
C. N.
Likos
,
M.
Watzalwek
, and
H.
Löwen
,
Phys. Rev. E
58
,
3135
(
1998
).
9.
A.
Lang
,
C. N.
Likos
,
M.
Watzlawek
, and
H.
Löwen
,
J. Phys: Condens. Matter
12
,
5087
(
2000
).
10.
A.
Santos
,
R.
Fantoni
, and
A.
Giacometti
,
Phys. Rev. E
77
,
051206
(
2008
).
11.
D.
Ruelle
,
Statistical Mechanics: Rigorous Results
(
Benjamin
,
London
,
1969
).
12.
M. E.
Fisher
and
D.
Ruelle
,
J. Math. Phys.
7
,
260
(
1966
).
13.
B.
Widom
and
J. S.
Rowlinson
,
J. Chem. Phys.
52
,
1670
(
1970
).
14.
S.
Torquato
,
J. Chem. Phys.
81
,
5079
(
1984
).
15.
P. A.
Rikvold
and
G.
Stell
,
J. Chem. Phys.
82
,
1014
(
1985
).
16.
F. H.
Stillinger
,
J. Chem. Phys.
65
,
3968
(
1976
).
17.
A. A.
Louis
,
P. G.
Bolhuis
, and
J. -P.
Hansen
,
Phys. Rev. E
62
,
7961
(
2000
).
18.
M. E.
Fisher
and
B.
Widom
,
J. Chem. Phys.
50
,
3756
(
1969
).
19.
D. S.
Corti
and
P. G.
Debenedetti
,
Phys. Rev. E
57
,
4211
(
1998
).
20.
M.
Heying
and
D. S.
Corti
,
Fluid Phase Equilib.
220
,
85
(
2004
).
21.
It may be noted that the LPA presented here is identical to the low-temperature approximation introduced in Ref. 7.
22.
S. B.
Yuste
and
A.
Santos
,
J. Stat. Phys.
72
,
703
(
1993
).
24.
See, e.g.,
A.
Giacometti
,
G.
Pastore
, and
F.
Lado
,
Mol. Phys.
107
,
555
(
2009
).
25.
J. -P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic
,
Amsterdam
,
2006
).
26.
R.
Evans
,
J. R.
Henderson
,
D. C.
Hoye
,
A. O.
Parry
, and
Z. A.
Suber
,
Mol. Phys.
80
,
755
(
1993
).
27.
R. J. F.
Leote de Carvalho
,
R.
Evans
,
D. C.
Hoyle
, and
J. R.
Henderson
,
J. Phys.: Condens. Matter
6
,
9275
(
1994
).
28.
C.
Vega
,
L. F.
Rull
, and
S.
Lago
,
Phys. Rev. E
51
,
3146
(
1995
).
29.
M.
Dijkstra
and
R.
Evans
,
J. Chem. Phys.
112
,
1449
(
2000
).
30.
P.
Tarazona
,
E.
Chacón
, and
E.
Velasco
,
Mol. Phys.
101
,
1595
(
2003
).
31.
It is interesting to remark that limβζ(ρ,β)=0 if ρ<(1+Δ/2)1, while limβζ(ρ,β)=ζ0(ρ)0 if ρ>(1+Δ/2)1, where ζ0(ρ) is the solution of ρ1=ζ01+(1λeζ0Δ)/(1eζ0Δ).
32.
33.
P.
Perry
and
S.
Fisk
,
J. Chem. Phys.
57
,
4065
(
1972
).
34.
R. J.
Baxter
,
J. Chem. Phys.
49
,
2770
(
1968
).
35.
G.
Stell
,
J. Stat. Phys.
63
,
1203
(
1991
).
36.
Y.
Tago
and
S.
Katsura
,
Can. J. Phys.
53
,
2587
(
1975
).
37.
N. A.
Seaton
and
E. D.
Glandt
,
J. Chem. Phys.
84
,
4595
(
1986
).
You do not currently have access to this content.