In this work I develop and apply a theoretical method for calculating effective electronic couplings (or transfer integrals) between redox sites involved in hole or electron transfer reactions. The resulting methodology is a refinement and a generalization of a recently developed approach for transfer integral evaluation. In fact, it holds for any overlap between the charge-localized states used to represent charge transfer (CT) processes in the two-state model. The presented theoretical and computational analyses show that the prototype approach is recovered for sufficiently small overlaps. The method does not involve any empirical parameter. It allows a complete multielectron description, therefore including electronic relaxation effects. Furthermore, its theoretical formulation holds at any value of the given reaction coordinate and yields a formula for the evaluation of the vertical excitation energy (i.e., the energy difference between the adiabatic ground and first-excited electronic states) that rests on the same physical quantities used in transfer integral calculation. In this paper the theoretical approach is applied to CT in B-DNA base dimers within the framework of Density Functional Theory (DFT), although it can be implemented in other computational schemes. The results of this work, as compared with previous Hartree–Fock (HF) and post-HF evaluations, support the applicability of the current implementation of the method to larger π-stacked arrays, where post-HF approaches are computationally unfeasible.

1.
A.
Nitzan
,
Annu. Rev. Phys. Chem.
52
,
681
(
2001
).
2.
A.
Aviram
,
M.
Ratner
, and
V.
Mujica
,
Molecular Electronics II. Annals of the New York Academy of Sciences
(
The New York Academy of Sciences
,
New York
,
2002
), Vol.
960
.
3.
G.
Maruccio
,
A.
Biasco
,
P.
Visconti
,
A.
Bramanti
,
P. P.
Pompa
,
F.
Calabi
,
R.
Cingolani
,
R.
Rinaldi
,
S.
Corni
,
R.
Di Felice
, and
E.
Molinari
,
Adv. Mater. (Weinheim, Ger.)
17
,
816
(
2005
).
4.
R. G.
Endres
,
D. L.
Cox
, and
R. R. P.
Singh
,
Rev. Mod. Phys.
76
,
195
(
2004
).
5.
D.
Porath
,
G.
Cuniberti
, and
R.
Di Felice
,
Top. Curr. Chem.
237
,
183
(
2004
).
6.
M.
Zwolak
and
M.
Di Ventra
,
Rev. Mod. Phys.
80
,
141
(
2008
).
7.
A.
Heller
,
Faraday Discuss.
116
,
1
(
2000
).
8.
E. M.
Boon
,
A. L.
Livingston
,
N. H.
Chmiel
,
S. S.
David
, and
J. K.
Barton
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
12543
(
2003
).
9.
M. R.
Holman
,
T.
Ito
, and
S. E.
Rokita
,
J. Am. Chem. Soc.
129
,
6
(
2007
).
10.
E.
Braun
,
Y.
Eichen
,
U.
Sivan
, and
G.
Ben-Yoseph
,
Nature (London)
391
,
775
(
1998
);
P. J.
de Pablo
,
F.
Moreno-Herrero
,
J.
Colchero
,
J.
Gómez-Herrero
,
P.
Herrero
,
A. M.
Baró
,
P.
Ordejón
,
J. M.
Soler
, and
E.
Artacho
,
Phys. Rev. Lett.
85
,
4992
(
2000
);
[PubMed]
A. J.
Storm
,
J.
van Noort
,
S.
de Vries
, and
C.
Dekker
,
Appl. Phys. Lett.
79
,
3881
(
2001
);
C.
Gomez-Navarro
,
F.
Moreno-Herrero
,
P. J.
de Pablo
,
J.
Colchero
,
J.
Gómez-Herrero
, and
A. M.
Baró
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
8484
(
2002
).
[PubMed]
11.
D.
Porath
,
A.
Bezryadin
,
S.
De Vries
, and
C.
Dekker
,
Nature (London)
403
,
635
(
2000
);
B.
Xu
,
P.
Zhang
,
X.
Li
, and
N.
Tao
,
Nano Lett.
4
,
1105
(
2004
);
H.
Van Zalinge
,
D. J.
Schiffrin
,
A. D.
Bates
,
W.
Haiss
,
J.
Ulstrup
, and
R. J.
Nichols
,
ChemPhysChem
7
,
94
(
2006
);
[PubMed]
N.
Kang
,
A.
Erbe
, and
E.
Scheer
,
New J. Phys.
10
,
023030
(
2008
).
12.
A.
Nitzan
,
J. Phys. Chem. A
105
,
2677
(
2001
);
A.
Nitzan
and
M. A.
Ratner
,
Science
300
,
1384
(
2003
);
[PubMed]
Y. A.
Berlin
and
M. A.
Ratner
,
Radiat. Phys. Chem.
74
,
124
(
2005
).
13.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta
811
,
265
(
1985
).
14.
H.
Eyring
,
J. Chem. Phys.
3
,
107
(
1935
);
H.
Eyring
,
Chem. Rev. (Washington, D.C.)
17
,
65
(
1935
).
15.
A. M.
Kuznetsov
and
J.
Ulstrup
,
Electron Transfer in Chemistry and Biology
(
Wiley
,
New York
,
1999
).
16.
L. D.
Landau
,
Phys. Z. Sowjetunion
1
,
88
(
1932
);
L. D.
Landau
,
Phys. Z. Sowjetunion
2
,
46
(
1932
);
C.
Zener
,
Proc. R. Soc. London, Ser. A
137
,
696
(
1932
);
C.
Zener
,
Proc. R. Soc. London, Ser. A
140
,
660
(
1933
).
17.
G. B.
Schuster
,
Acc. Chem. Res.
33
,
253
(
2000
).
18.
B.
Giese
,
Acc. Chem. Res.
33
,
631
(
2000
).
19.
M. A.
O’Neill
and
J. K.
Barton
,
Top. Curr. Chem.
236
,
67
(
2004
).
20.
M.
Bixon
,
B.
Giese
,
S.
Wessely
,
T.
Langenbacher
,
M. E.
Michel-Beyerle
, and
J. J.
Jortner
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
11713
(
1999
).
21.
A. A.
Voityuk
,
J.
Jortner
,
M.
Bixon
, and
N.
Rösch
,
J. Chem. Phys.
114
,
5614
(
2001
).
22.
G. S. M.
Tong
,
I. V.
Kurnikov
, and
D. N.
Beratan
,
J. Phys. Chem. B
106
,
2381
(
2002
).
23.
J.
Jortner
,
M.
Bixon
,
A. A.
Voityuk
, and
N.
Rösch
,
J. Phys. Chem. A
106
,
7599
(
2002
).
24.
Y. A.
Berlin
,
I. V.
Kurnikov
,
D. N.
Beratan
,
M. A.
Ratner
, and
A. L.
Burin
,
Top. Curr. Chem.
237
,
1
(
2004
).
25.
K.
Senthilkumar
,
F. C.
Grozema
,
C.
Fonseca Guerra
,
F. M.
Bickelhaupt
,
F. D.
Lewis
,
Y. A.
Berlin
,
M. A.
Ratner
, and
L. D. A.
Siebbeles
,
J. Am. Chem. Soc.
127
,
14894
(
2005
).
26.
L.
Blancafort
and
A. A.
Voityuk
,
J. Phys. Chem. A
110
,
6426
(
2006
).
27.
A.
Ivanova
,
P.
Shushkov
, and
N.
Rösch
,
J. Phys. Chem. A
112
,
7106
(
2008
).
28.
T.
Kubař
and
M.
Elstner
,
J. Phys. Chem. B
113
,
5653
(
2009
).
29.
S.
Delaney
and
J. K.
Barton
,
J. Org. Chem.
68
,
6475
(
2003
).
30.
N.
Rösch
and
A. A.
Voityuk
,
Top. Curr. Chem.
237
,
37
(
2004
).
31.
S.
Priyadarshy
,
S. M.
Risser
, and
D. N.
Beratan
,
J. Phys. Chem.
100
,
17678
(
1996
).
32.
S.
Steenken
and
S. V.
Jovanovic
,
J. Am. Chem. Soc.
119
,
617
(
1997
).
33.
B.
Giese
,
J.
Amaudrut
,
A. -K.
Köhler
,
M.
Spormann
, and
S.
Wessely
,
Nature (London)
412
,
318
(
2001
).
34.
K.
Nakatani
,
C.
Dohno
, and
I.
Saito
,
J. Am. Chem. Soc.
121
,
10854
(
1999
).
35.
E. M.
Conwell
,
S. M.
Bloch
,
P. M.
Mclaughlin
, and
D. M.
Basko
,
J. Am. Chem. Soc.
129
,
9175
(
2007
).
36.
F. C.
Grozema
,
S.
Tonzani
,
Y. A.
Berlin
,
G. C.
Schatz
,
L. D. A.
Siebbles
, and
M. A.
Ratner
,
J. Am. Chem. Soc.
130
,
5157
(
2008
).
37.
A.
Farazdel
,
M.
Dupuis
,
E.
Clementi
, and
A.
Aviram
,
J. Am. Chem. Soc.
112
,
4206
(
1990
).
38.
L. Y.
Zhang
,
R. A.
Friesner
, and
R. B.
Murphy
,
J. Chem. Phys.
107
,
450
(
1997
).
39.
R. J.
Cave
and
M. D.
Newton
,
Chem. Phys. Lett.
249
,
15
(
1996
);
R. J.
Cave
and
M. D.
Newton
,
J. Chem. Phys.
106
,
9213
(
1997
).
40.
S. S.
Skourtis
and
D. N.
Beratan
,
Adv. Chem. Phys.
106
,
377
(
1999
).
41.
J. J.
Regan
and
J. N.
Onuchic
,
Adv. Chem. Phys.
107
,
497
(
1999
).
42.
O. V.
Prezhdo
,
J. T.
Kindt
, and
J. C.
Tully
,
J. Chem. Phys.
111
,
7818
(
1999
).
43.
A.
Voityuk
,
N.
Rösch
,
M.
Bixon
, and
J.
Jortner
,
J. Phys. Chem. B
104
,
9740
(
2000
).
44.
A. A.
Voityuk
and
N.
Rösch
,
J. Chem. Phys.
117
,
5607
(
2002
).
45.
X. H.
Zheng
and
A. A.
Stuchebrukhov
,
J. Phys. Chem. B
107
,
9579
(
2003
).
46.
T. R.
Prytkova
,
I. V.
Kurnikov
, and
D. N.
Beratan
,
J. Phys. Chem. B
109
,
1618
(
2005
).
47.
H.
Nishioka
,
A.
Kimura
,
T.
Yamato
,
T.
Kawatsu
, and
T.
Kakitani
,
J. Phys. Chem. B
109
,
1978
(
2005
).
48.
A.
Migliore
,
S.
Corni
,
R.
Di Felice
, and
E.
Molinari
,
J. Chem. Phys.
124
,
064501
(
2006
).
49.
Q.
Wu
and
T.
Van Voorhis
,
Phys. Rev. A
72
,
024502
(
2005
);
Q.
Wu
and
T.
Van Voorhis
,
J. Chem. Phys.
125
,
164105
(
2006
).
[PubMed]
50.
51.
D.
Cremer
,
Mol. Phys.
99
,
1899
(
2001
).
52.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
53.
H.
Nakamura
and
D. G.
Truhlar
,
J. Chem. Phys.
115
,
10353
(
2001
).
54.
J.
Franck
,
Trans. Faraday Soc.
21
,
536
(
1926
);
E. U.
Condon
,
Phys. Rev.
28
,
1182
(
1926
).
55.
For a discussion on the relation among crossing of the diabatic energy surfaces, transfer integral, and minimum adiabatic energy splitting when other electronic states can intervene and an effective two-state model can be introduced, I refer to other works, e.g.,
M. D.
Newton
,
Chem. Rev. (Washington, D.C.)
91
,
767
(
1991
) (and references therein).
56.
In Ref. 48, Eq. (11) was used to study the distance dependence of the transfer integral in a small model of a blue copper azurin dimer. Table I therein shows that, as the distance between the pertinent redox sites is increased, the quantity 2ab passes from values comparable with unity to values smaller than 102. On the other hand, supporting calculations yielded values of SIF smaller than 104. This allowed a safe use of Eq. (11), although the theoretical development of Ref. 48 cannot appreciate an exact upper limit for SIF, except for the necessary condition SIF=o(1).
57.
M.
Weissbluth
,
Atoms and Molecules
(
Academic
,
New York
,
1978
).
58.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
59.
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
(
Wiley
,
New York
,
2000
).
60.
E. J.
Bylaska
,
W. A.
de Jong
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
M.
Valiev
,
D.
Wang
,
E.
Apra
,
T. L.
Windus
,
J.
Hammond
,
P.
Nichols
,
S.
Hirata
,
M. T.
Hackler
,
Y.
Zhao
,
P. -D.
Fan
,
R. J.
Harrison
,
M.
Dupuis
,
D. M. A.
Smith
,
J.
Nieplocha
,
V.
Tipparaju
,
M.
Krishnan
,
Q.
Wu
,
T.
Van Voorhis
,
A. A.
Auer
,
M.
Nooijen
,
E.
Brown
,
G.
Cisneros
,
G. I.
Fann
,
H.
Fruchtl
,
J.
Garza
,
K.
Hirao
,
R.
Kendall
,
J. A.
Nichols
,
K.
Tsemekhman
,
K.
Wolinski
,
J.
Anchell
,
D.
Bernholdt
,
P.
Borowski
,
T.
Clark
,
D.
Clerc
,
H.
Dachsel
,
M.
Deegan
,
K.
Dyall
,
D.
Elwood
,
E.
Glendening
,
M.
Gutowski
,
A.
Hess
,
J.
Jaffe
,
B.
Johnson
,
J.
Ju
,
R.
Kobayashi
,
R.
Kutteh
,
Z.
Lin
,
R.
Littlefield
,
X.
Long
,
B.
Meng
,
T.
Nakajima
,
S.
Niu
,
L.
Pollack
,
M.
Rosing
,
G.
Sandrone
,
M.
Stave
,
H.
Taylor
,
G.
Thomas
,
J.
van Lenthe
,
A.
Wong
, and
Z.
Zhang
,
NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.1
(
Pacific Northwest National Laboratory
,
Richland, WA
,
2007
);
R. A.
Kendall
,
E.
Apra
,
D. E.
Bernholdt
,
E. J.
Bylaska
,
M.
Dupuis
,
G. I.
Fann
,
R. J.
Harrison
,
J.
Ju
,
J. A.
Nichols
,
J.
Nieplocha
,
T. P.
Straatsma
,
T. L.
Windus
, and
A. T.
Wong
,
Comput. Phys. Commun.
128
,
260
(
2000
).
61.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
62.
J.
Harris
and
R. O.
Jones
,
J. Phys. F: Met. Phys.
4
,
1170
(
1974
);
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
);
D. C.
Langreth
, and
J. P.
Perdew
,
Phys. Rev. B
15
,
2884
(
1977
);
J.
Harris
,
Phys. Rev. A
29
,
1648
(
1984
).
63.
M.
Liao
,
Y.
Lu
, and
S.
Scheiner
,
J. Comput. Chem.
24
,
623
(
2003
).
64.
M. P.
Waller
,
A.
Robertazzi
,
J. A.
Platts
,
D. E.
Hibbs
, and
P. A.
Williams
,
J. Comput. Chem.
27
,
491
(
2006
).
65.
A.
Robertazzi
and
J. A.
Platts
,
J. Phys. Chem. A
110
,
3992
(
2006
).
66.
J. A.
Anderson
and
G. S.
Tschumper
,
J. Phys. Chem. A
110
,
7268
(
2006
).
67.
M.
Miura
,
Y.
Aoki
, and
B.
Champagne
,
J. Chem. Phys.
127
,
084103
(
2007
).
68.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
69.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
70.
Y.
Kawashima
,
K.
Nakayama
,
H.
Nakan
, and
K.
Hirao
,
Chem. Phys. Lett.
267
,
82
(
1997
).
71.
O.
Kühn
,
M. R. D.
Hachey
,
M. M.
Rohmer
, and
C.
Daniel
,
Chem. Phys. Lett.
322
,
199
(
2000
).
72.
W. -J.
Ding
,
W. -H.
Fang
, and
R. -Z.
Liu
,
Chem. Phys. Lett.
369
,
570
(
2003
).
73.
L.
Zhang
,
G. H.
Peslherbe
, and
H. M.
Muchall
,
Photochem. Photobiol.
82
,
324
(
2006
).
74.
J.
González-Vázquez
and
L.
González
,
Chem. Phys.
349
,
287
(
2008
).
75.
S.
Grimme
and
M.
Waletze
,
Phys. Chem. Chem. Phys.
2
,
2075
(
2000
).
76.
M.
Schreiber
,
M. R.
Silva-Junior
,
S. P. A.
Sauer
, and
W.
Thiel
,
J. Chem. Phys.
128
,
134110
(
2008
).
77.
F.
Jensen
,
Introduction to Computational Chemistry
, 2nd ed. (
Wiley
,
Chichester
,
2007
), pp.
153
159
.
78.
J. G.
Snijders
,
P.
Vernooijs
, and
E. J.
Baerends
,
At. Data Nucl. Data Tables
26
,
483
(
1981
).
79.
P. O.
Löwdin
,
J. Chem. Phys.
18
,
365
(
1950
).
80.
Note that TZVP is not a double-polarization basis set, but this is not relevant to the comparison.
81.
A. A.
Stuchebrukhov
,
J. Chem. Phys.
118
,
7898
(
2003
).
82.
A.
Migliore
,
S.
Corni
,
R.
Di Felice
, and
E.
Molinari
,
J. Phys. Chem. B
110
,
23796
(
2006
).
83.
A.
Migliore
,
S.
Corni
,
R.
Di Felice
, and
E.
Molinari
,
J. Phys. Chem. B
111
,
3774
(
2007
).
84.
A.
Migliore
,
P. H.-L.
Sit
, and
M. L.
Klein
,
J. Chem. Theory Comput.
5
,
307
(
2009
).
85.
P. H.
Dederichs
,
S.
Blügel
,
R.
Zeller
, and
H.
Akai
,
Phys. Rev. Lett.
53
,
2512
(
1984
).
86.
P. H.-L.
Sit
,
M.
Cococcioni
, and
N.
Marzari
,
Phys. Rev. Lett.
97
,
028303
(
2006
).
87.
A.
Migliore
,
S.
Corni
,
D.
Varsano
,
M. L.
Klein
, and
R.
Di Felice
,
J. Phys. Chem. B
113
,
9402
(
2009
).
88.
T.
Kubař
,
P. B.
Woiczikowski
,
G.
Cuniberti
, and
M.
Elstner
,
J. Phys. Chem. B
112
,
7937
(
2008
).
89.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
90.
T. A.
Niehaus
,
A.
Di Carlo
, and
Th.
Frauenheim
,
Org. Electron.
5
,
167
(
2004
).
91.
M. J.
Nowak
,
L.
Lapinski
,
J. S.
Kwiatkowski
, and
J.
Leszczynski
, in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
Singapore
,
1997
), Vol.
2
, pp.
140
216
.
You do not currently have access to this content.