A noniterative N6 triples energy correction is presented for the equation-of-motion coupled-cluster method with single and double substitutions for ionized states (EOM-IP-CCSD). The correction, which is size intensive, is derived using a second-order Rayleigh–Schrödinger perturbative treatment and is similar to the approach of Stanton and Gauss [Theor. Chim. Acta93, 303 (1996)]. In the present implementation, only the target EOM-IP states are corrected, and the reference state is described by CCSD; the method is therefore more useful for the study of the target states themselves than ionization potentials. The performance of the correction, which demonstrates the caveat above, is demonstrated by applications to singlet methylene, BNB, nitrogen, carbon monoxide, acetylene, benzene, thymine, and adenine.

1.
D. J.
Rowe
,
Rev. Mod. Phys.
40
,
153
(
1968
).
3.
J.
Geertsen
,
M.
Rittby
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
164
,
57
(
1989
).
4.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
5.
S. V.
Levchenko
and
A. I.
Krylov
,
J. Chem. Phys.
120
,
175
(
2004
).
6.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
101
,
8938
(
1994
).
7.
M.
Nooijen
and
R. J.
Bartlett
,
J. Chem. Phys.
102
,
3629
(
1995
).
8.
J. F.
Stanton
and
J.
Gauss
,
Theor. Chim. Acta
93
,
303
(
1996
).
9.
S. R.
Gwaltney
,
M.
Nooijen
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
248
,
189
(
1996
).
10.
M.
Nooijen
and
R. J.
Bartlett
,
J. Chem. Phys.
107
,
6812
(
1997
).
11.
S. R.
Gwaltney
and
R. J.
Bartlett
,
J. Chem. Phys.
110
,
62
(
1999
).
12.
M.
Nooijen
and
V.
Lotrich
,
J. Chem. Phys.
113
,
494
(
2000
).
13.
S.
Hirata
,
M.
Nooijen
,
I.
Grabowski
, and
R. J.
Bartlett
,
J. Chem. Phys.
114
,
3919
(
2001
).
14.
M.
Wladyslawski
and
M.
Nooijen
,
ACS Symp. Ser.
828
,
65
(
2002
).
15.
K. W.
Sattelmeyer
,
H. F.
Schaefer
, and
J. F.
Stanton
,
Chem. Phys. Lett.
378
,
42
(
2003
).
16.
P. D.
Fan
,
M.
Kamyia
, and
S.
Hirata
,
J. Chem. Theory Comput.
3
,
1036
(
2007
).
17.
P. A.
Pieniazek
,
S. A.
Arnstein
,
S. E.
Bradforth
,
A. I.
Krylov
, and
C. D.
Sherrill
,
J. Chem. Phys.
127
,
164110
(
2007
).
18.
H. J.
Monkhorst
,
Int. J. Quantum Chem., Quantum Chem. Symp.
11
,
421
(
1977
).
19.
D.
Mukherjee
and
P. K.
Mukherjee
,
Chem. Phys.
39
,
325
(
1979
).
20.
H.
Sekino
and
R. J.
Bartlett
,
Int. J. Quantum Chem., Quantum Chem. Symp.
26
,
255
(
1984
).
21.
H.
Koch
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
T.
Helgaker
,
J. Chem. Phys.
93
,
3345
(
1990
).
22.
M.
Head-Gordon
and
T. J.
Lee
, in
Modern Ideas in Coupled Cluster Theory
, edited by
R. J.
Bartlett
(
World Scientific
,
Singapore
,
1997
).
23.
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
2053
(
1978
).
24.
H.
Nakatsuji
,
Chem. Phys. Lett.
177
,
331
(
1991
).
25.
M.
Haque
and
D.
Mukherjee
,
J. Chem. Phys.
80
,
5058
(
1984
).
26.
D.
Sinha
,
D.
Mukhopadhyay
, and
D.
Mukherjee
,
Chem. Phys. Lett.
129
,
369
(
1986
).
27.
S.
Pal
,
M.
Rittby
,
R. J.
Bartlett
,
D.
Sinha
, and
D.
Mukherjee
,
Chem. Phys. Lett.
137
,
273
(
1987
).
28.
I.
Lindgren
and
D.
Mukherjee
,
Phys. Rep.
151
,
93
(
1987
).
29.
D.
Mukherjee
and
S.
Pal
,
Adv. Quantum Chem.
20
,
291
(
1989
).
30.
D.
Mukhopadhyay
,
S.
Mukhopadhyay
,
R.
Chaudhuri
, and
D.
Mukherjee
,
Theor. Chim. Acta
80
,
441
(
1991
).
31.
H.
Larsen
,
K.
Hald
,
J.
Olsen
, and
P.
Jørgensen
,
J. Chem. Phys.
115
,
3015
(
2001
).
32.
J. F.
Stanton
,
K. W.
Sattelmeyer
,
J.
Gauss
,
M.
Allan
,
T.
Skalicky
, and
T.
Bally
,
J. Chem. Phys.
115
,
1
(
2001
).
33.
L. V.
Slipchenko
and
A. I.
Krylov
,
J. Chem. Phys.
117
,
4694
(
2002
).
34.
P. A.
Pieniazek
,
A. I.
Krylov
, and
S. E.
Bradforth
,
J. Chem. Phys.
127
,
044317
(
2007
).
35.
J. F.
Stanton
,
J. Chem. Phys.
126
,
134309
(
2007
).
36.
The models with the truncation of EOM amplitudes that is of the same rank as of CC amplitudes or one rank higher are size intensive for IP/EA (but not for EE).
37.
M.
Kamiya
and
S.
Hirata
,
J. Chem. Phys.
125
,
074111
(
2006
).
38.
M.
Musiał
,
S. A.
Kucharski
, and
R. J.
Bartlett
,
J. Chem. Phys.
118
,
1128
(
2003
).
39.
M.
Musiał
and
R. J.
Bartlett
,
Chem. Phys. Lett.
384
,
210
(
2004
).
40.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
121
,
9257
(
2004
).
41.
J. C.
Saeh
and
J. F.
Stanton
,
J. Chem. Phys.
111
,
8275
(
1999
).
42.
S.
Hirata
,
M.
Nooijen
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
326
,
255
(
2000
).
43.
S.
Hirata
,
M.
Nooijen
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
328
,
459
(
2000
).
44.
Y. J.
Bomble
,
J. C.
Saeh
,
J. F.
Stanton
,
P. G.
Szalay
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
122
,
154107
(
2005
).
45.
P. A.
Pieniazek
,
S. E.
Bradforth
, and
A. I.
Krylov
,
J. Chem. Phys.
129
,
074104
(
2008
).
46.
S.
Pal
,
M.
Rittby
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
160
,
212
(
1989
).
47.
K.
Adhikari
,
S.
Chattopadhyay
,
R. K.
Nath
,
B. K.
De
, and
D.
Sinha
,
Chem. Phys. Lett.
474
,
199
(
2009
).
48.
P. U.
Manohar
and
A. I.
Krylov
,
J. Chem. Phys.
129
,
194105
(
2008
).
49.
In EOM-IP, EOM-EA, and EOM-SF the reference has different numbers of electrons and is not interacting with the target states at any level of PT.
50.
S. R.
Gwaltney
,
C. D.
Sherrill
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
51.
S. R.
Gwaltney
and
M.
Head-Gordon
,
J. Chem. Phys.
115
,
2014
(
2001
).
52.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
53.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
54.
T. D.
Crawford
and
J. F.
Stanton
,
Int. J. Quantum Chem.
70
,
601
(
1998
).
55.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
108
,
5243
(
1998
).
56.
P.
Piecuch
,
M.
Włoch
,
J. R.
Gour
, and
A.
Kinal
,
Chem. Phys. Lett.
418
,
463
(
2005
).
57.
P.
Piecuch
and
M.
Włoch
,
J. Chem. Phys.
123
,
224105
(
2005
).
58.
L. V.
Slipchenko
and
A. I.
Krylov
,
J. Chem. Phys.
123
,
084107
(
2005
).
59.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
60.
See EPAPS supplementary material http://dx.doi.org/10.1063/1.3231133 for the molecular structures, total energies, and molecular orbitals.
61.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
62.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
7410
(
1994
).
63.
J. M. L.
Martin
,
Chem. Phys. Lett.
259
,
669
(
1996
).
64.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
65.
A.
Halkier
,
T.
Helgaker
,
P.
Jorgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
66.
K. L.
Bak
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
W.
Klopper
,
J. Chem. Phys.
112
,
9229
(
2000
).
67.
J.
Gauss
and
J. F.
Stanton
,
J. Phys. Chem. A
104
,
2865
(
2000
).
68.
A. A.
Golubeva
,
P. A.
Pieniazek
, and
A. I.
Krylov
,
J. Chem. Phys.
130
,
124113
(
2009
).
69.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
70.
Y.
Shao
,
L. F.
Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neil
,
R. A.
Distasio
, Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Bird
,
H.
Daschel
,
R. J.
Doerksen
,
A.
Drew
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C. -P.
Hsu
,
G. S.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunziger
,
A. M.
Lee
,
W. Z.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Herhe
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
71.
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
,
P. G.
Szalay
,
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Buomble
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
D. P.
O'Neill
,
D. R.
Price
,
E.
Prochnow
,
K.
Rudd
,
F.
Schiffmann
,
S.
Stopkowicz
,
M. E.
Varner
,
J.
Vázquez
,
F.
Wang
, and
J. D.
Watts
, in CFOUR, Coupled Cluster techniques for Computational Chemistry, a quantum-chemical program package, www.cfour.de.
72.
M. E.
Harding
,
T.
Metzroth
,
J.
Gauss
, and
A. A.
Auer
,
J. Chem. Theory Comput.
4
,
64
(
2008
).
73.
K. R.
Asmis
,
T. R.
Taylor
, and
D. M.
Neumark
,
J. Chem. Phys.
111
,
8838
(
1999
).
74.
X. Z.
Li
and
J.
Paldus
,
J. Chem. Phys.
126
,
224304
(
2007
).
75.
The two leading R2 amplitudes are degenerate and equal to 0.52 corresponding to ionization of πu electrons accompanied by σuπg excitations. The total R12 and R22 values are 0.0232 and 0.9768, respectively.
76.
The leading R2 amplitude is 0.76 corresponding to ionization of a 5a1 electron accompanied by excitation of the remaining 5a1 electron to one of the degenerate π-LUMO. The total R12 and R22 values are 0.0029 and 0.9971, respectively.
77.
P.
Baltzer
,
L.
Karlsson
,
B.
Wannberg
,
G.
Ohrwall
,
D. M. P.
Holland
,
M. A.
MacDonald
,
M. A.
Hayes
, and
D.
von Niessen
,
Chem. Phys.
224
,
95
(
1997
).
78.
G.
Lauer
,
W.
Schäfer
, and
A.
Schweig
,
Tetrahedron Lett.
16
,
3939
(
1975
).
79.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
,
J. Phys. Chem. Ref. Data
17
,
1
(
1988
).
80.
S.
Urano
,
X.
Yang
, and
P. R.
LeBrenton
,
J. Mol. Struct.
214
,
315
(
1989
).
81.
D.
Dougherty
,
K.
Wittel
,
J.
Meeks
, and
S. P.
McGlynn
,
J. Am. Chem. Soc.
98
,
3815
(
1976
).
82.
A. I.
Krylov
,
C. D.
Sherrill
, and
M.
Head-Gordon
, “
Efficient C++ tensor library for coupled-cluster calculations
,” (unpublished).
83.
T. L.
Windus
and
J. A.
Pople
,
Int. J. Quantum Chem.
56
,
485
(
1995
).
84.
A. I.
Krylov
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Chem. Phys.
113
,
6509
(
2000
).
85.
S. V.
Levchenko
,
T.
Wang
, and
A. I.
Krylov
,
J. Chem. Phys.
122
,
224106
(
2005
).
86.
S.
Katsumata
,
K.
Kimura
,
Y.
Achiba
,
T.
Yamazaki
, and
S.
Iwata
,
Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules
(
Japan Scientific Societies
,
Tokyo
,
1981
).
87.
P.
Baltzer
,
M.
Larsson
,
L.
Karlsson
,
B.
Wannberg
, and
M.
Carlsson-Götte
,
Phys. Rev. A
46
,
5545
(
1992
).
88.
S.
Svensson
,
M.
Carlsson-Götte
, and
L.
Karlsson
,
Phys. Scr.
44
,
184
(
1991
).
89.
A. W.
Potts
and
T. A.
Williams
,
J. Electron Spectrosc. Relat. Phenom.
3
,
3
(
1974
).
90.
C. L.
French
,
C. E.
Brion
,
A. O.
Bawagan
,
P. S.
Bagus
, and
E. R.
Davidson
,
Chem. Phys.
121
,
315
(
1988
).
91.
R. C.
Morrison
and
G.
Liu
,
J. Comput. Chem.
13
,
1004
(
1992
).
92.
D.
Dougherty
,
E. S.
Younathan
,
R.
Voll
,
S.
Abdulnur
, and
S. P.
McGlynn
,
J. Electron Spectrosc. Relat. Phenom.
13
,
379
(
1978
).

Supplementary Material

You do not currently have access to this content.