We perform molecular dynamics simulations of a coarse-grained model of a polymer-solvent mixture to study solvent evaporation from supported and freestanding polymer films near the bulk glass transition temperature Tg. We find that the evaporation process is characterized by three time (t) regimes: An early regime where the initially large surplus of solvent at the film-vapor interface evaporates and the film thickness h varies little with t, an intermediate regime where h decreases strongly, and a final regime where h slowly converges toward the asymptotic value of the dry film. In the intermediate regime the decrease of h goes along with an increase of the monomer density at the retracting interface. This polymer-rich “crust” is a nonequilibrium effect caused by the fast evaporation rate in our simulation. The interfacial excess of polymer gradually vanishes as the film approaches the dry state. In the intermediate and final time regimes it is possible to describe the simulation data for h(t) and the solvent density profile ϕL(y,t) by the numerical solution of a one-dimensional diffusion model depending only on the y direction perpendicular to the interface. The key parameter of this model is the mutual diffusion coefficient DL of the solvent in the film. Above Tg we find that a constant DL allows to describe the simulation data, whereas near Tg agreement between simulation and modeling can only be obtained if the diffusion coefficient depends on y through two factors: A factor describing the slowing down of the dynamics with decreasing solvent concentration ϕL(y,t) and a factor parametrizing the smooth gradient toward enhanced dynamics as the film-vapor interface is approached.

1.
K.
Norrman
,
A.
Ghanbari-Siahkali
, and
N. B.
Larsen
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
101
,
174
(
2005
).
2.
D. W.
Schubert
and
T.
Dunkel
,
Mater. Res. Innovations
7
,
314
(
2003
).
3.
D. E.
Bornside
,
C. W.
Macosko
, and
L. E.
Scriven
,
J. Imaging Technol.
13
,
122
(
1987
).
4.
D. E.
Bornside
,
C. W.
Macosko
, and
L. E.
Scriven
,
J. Appl. Phys.
66
,
5185
(
1989
).
5.
H.
Richardson
,
M.
Sferrazza
, and
J.
Keddie
,
Phys. Rev. E
70
,
051805
(
2004
).
6.
H.
Richardson
,
M.
Sferrazza
, and
J.
Keddie
,
Eur. Phys. J. E
12
,
S87
(
2003
).
7.
G.
Reiter
and
P. G.
de Gennes
,
Eur. Phys. J. E
6
,
25
(
2001
).
8.
L.
Masaro
and
X. X.
Zhu
,
Prog. Polym. Sci.
24
,
731
(
1999
).
9.
M.
Tsige
and
G. S.
Grest
,
J. Phys.: Condens. Matter
17
,
S4119
(
2005
).
10.
M.
Tsige
and
G.
Grest
,
J. Chem. Phys.
120
,
2989
(
2004
).
11.
M.
Tsige
and
G.
Grest
,
J. Chem. Phys.
121
,
7513
(
2004
).
12.
N. L.
Thomas
and
A. H.
Windle
,
Polymer
23
,
529
(
1982
);
N. L.
Thomas
and
A. H.
Windle
,
Polymer
22
,
627
(
1981
).
13.
C. -Y.
Hui
and
K. -C.
Wu
,
J. Appl. Phys.
61
,
5137
(
1987
).
14.
D. F.
Stamatialis
,
M.
Sanopoulou
, and
J. H.
Petropoulos
,
Macromolecules
35
,
1021
(
2002
).
15.
16.
T.
Qian
and
P. L.
Taylor
,
Polymer
41
,
7159
(
2000
).
17.
M.
Sanopoulou
,
D. F.
Stamatialis
, and
J. H.
Petropoulos
,
Macromolecules
35
,
1012
(
2002
).
18.
M.
Souche
and
D.
Long
,
Europhys. Lett.
77
,
48002
(
2007
).
19.
J. S.
Vrentas
and
C. M.
Vrentas
,
J. Appl. Polym. Sci.
60
,
1049
(
1996
).
20.
P. G.
de Gennes
,
Eur. Phys. J. E
7
,
31
(
2002
).
21.
T.
Okuzono
,
K.
Ozawa
, and
M.
Doi
,
Phys. Rev. Lett.
97
,
136103
(
2006
).
22.
K.
Ozawa
,
T.
Okuzono
, and
M.
Doi
,
Jpn. J. Appl. Phys., Part 1
45
,
8817
(
2006
).
23.
M.
Müller
and
G. D.
Smith
,
J. Polym. Sci., Part B: Polym. Phys.
43
,
934
(
2005
).
24.
C. -Y.
Hui
and
K. -C.
Wu
,
J. Appl. Phys.
61
,
5129
(
1987
).
25.
J.
Yaneva
,
B.
Dünweg
, and
A.
Milchev
,
J. Chem. Phys.
122
,
204105
(
2005
).
26.
M.
Tsige
and
G. S.
Grest
,
Macromolecules
37
,
4333
(
2004
).
27.
J.
Crank
,
Mathematics of Diffusion
(
Oxford University Press
,
Oxford
,
1975
).
28.
F.
Crank
,
Free and Moving Boundary Problems
(
Clarendon
,
Oxford
,
1984
).
29.
R.
Ghez
,
A Primer of Diffusion Problems
(
Wiley
,
New York
,
1988
).
30.
S.
Peter
,
H.
Meyer
, and
J.
Baschnagel
,
J. Chem. Phys.
131
,
014902
(
2009
).
31.
S.
Peter
,
H.
Meyer
, and
J.
Baschnagel
,
Eur. Phys. J. E
28
,
147
(
2009
).
32.
A.
Onuki
,
Phase Transition Dynamics
(
Cambridge University Press
,
Cambridge
,
2002
).
33.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic
,
London
,
1986
).
34.
H.
Weingärtner
, in
Diffusion in Condensed Matter
, edited by
P.
Heitjans
and
J.
Kärger
(
Springer
,
Berlin
,
2005
), pp.
555
578
.
35.
R.
Chebbi
and
M.
Selim
,
Heat Mass Transfer
42
,
238
(
2006
).
36.
T.
Illingworth
,
I.
Golosnoy
,
V.
Gergely
, and
T.
Clyne
,
J. Mater. Sci.
40
,
2505
(
2005
).
37.
S.
Peter
, Ph.D. thesis,
Université Louis Pasteur Strasbourg
,
2007
(available from http://eprints-scd-ulp.u-strasbg.fr:8080/805).
38.
C.
Ellison
,
M.
Mundra
, and
J.
Torkelson
,
Macromolecules
38
,
1767
(
2005
).
39.
S.
Peter
,
H.
Meyer
, and
J.
Baschnagel
,
J. Polym. Sci., Part B: Polym. Phys.
44
,
2951
(
2006
).
40.
S.
Peter
,
H.
Meyer
,
J.
Baschnagel
, and
R.
Seemann
,
J. Phys.: Condens. Matter
19
,
205119
(
2007
).
41.
S.
Peter
,
S.
Napolitano
,
H.
Meyer
,
M.
Wübbenhorst
, and
J.
Baschnagel
,
Macromolecules
41
,
7729
(
2008
).
42.
J.
Baschnagel
and
F.
Varnik
,
J. Phys.: Condens. Matter
17
,
R851
(
2005
).
43.
J. L.
Keddie
,
R. A. L.
Jones
, and
R. A.
Cory
,
Europhys. Lett.
27
,
59
(
1994
).
44.
J. S.
Sharp
and
J. A.
Forrest
,
Phys. Rev. Lett.
91
,
235701
(
2003
).
45.
Z.
Fakhraai
and
J. A.
Forrest
,
Science
319
,
600
(
2008
).
46.
C. B.
Roth
,
K. L.
McNerny
,
W. F.
Jager
, and
J. M.
Torkelson
,
Macromolecules
40
,
2568
(
2007
).
47.
C. J.
Ellison
and
J. M.
Torkelson
,
Nature Mater.
2
,
695
(
2003
).
48.
R. D.
Priestley
,
C. J.
Ellison
,
L. J.
Broadbelt
, and
J. M.
Torkelson
,
Science
309
,
456
(
2005
).
You do not currently have access to this content.