A coarse-grained model developed by Marrink et al. [J. Phys. Chem. B111, 7812 (2007)] is applied to investigate vesiculation of lipid [dipalmitoylphosphatidylcholine (DPPC)] droplets in water. Three kinds of morphologies of micelles are found with increasing lipid droplet size. When the initial lipid droplet is smaller, the equilibrium structure of the droplet is a spherical micelle. When the initial lipid droplet is larger, the lipid ball starts to transform into a disk micelle or vesicle. The mechanism of vesicle formation from a lipid ball is analyzed from the self-assembly of DPPC on the molecular level, and the morphological transition from disk to vesicle with increasing droplet size is demonstrated. Importantly, we discover that the transition point is not very sharp, and for a fixed-size lipid ball, the disk and vesicle appear with certain probabilities. The splitting phenomenon, i.e., the formation of a disk/vesicle structure from a lipid droplet, is explained by applying a hybrid model of the Helfrich membrane theory. The elastic module of the DPPC bilayer and the smallest size of a lipid droplet for certain formation of a vesicle are successfully predicted.

1.
M.
Almgren
,
Biochim. Biophys. Acta
1508
,
146
(
2000
).
2.
S.
Šegota
and
D.
Težak
,
Adv. Colloid Interface Sci.
121
,
51
(
2006
).
3.
G.
Cevc
,
Adv. Drug Delivery Rev.
56
,
675
(
2004
).
4.
G. M.
El Maghraby
,
B. W.
Barry
, and
A. C.
Williams
,
Eur. J. Pharm. Sci.
34
,
203
(
2008
).
5.
M. P.
Nieh
,
J.
Katsaras
, and
X.
Qi
,
Biochim. Biophys. Acta
1778
,
1467
(
2008
).
6.
P.
Walde
and
S.
Ichikawa
,
Biomol. Eng.
18
,
143
(
2001
).
7.
T.
Umeda
,
Y.
Suezaki
,
K.
Takiguchi
, and
H.
Hotani
,
Phys. Rev. E
71
,
011913
(
2005
).
8.
N.
Rodriguez
,
S.
Cribier
, and
F.
Pincet
,
Phys. Rev. E
74
,
061902
(
2006
).
9.
A. J.
O'Connor
,
T. A.
Hatton
, and
A.
Bose
,
Langmuir
13
,
6931
(
1997
).
10.
M.
Gradzielski
,
Curr. Opin. Colloid Interface Sci.
9
,
256
(
2004
).
11.
C.
Hamai
,
P. S.
Cremer
, and
S. M.
Musser
,
Biophys. J.
92
,
1988
(
2007
).
12.
J.
Leng
,
S. U.
Egelhaaf
, and
M. E.
Cates
,
Biophys. J.
85
,
1624
(
2003
).
13.
S. U.
Egelhaaf
and
P.
Schurtenberger
,
Phys. Rev. Lett.
82
,
2804
(
1999
).
14.
A.
Shioi
and
T. A.
Hatton
,
Langmuir
18
,
7341
(
2002
).
15.
M.
Ollivon
,
S.
Lesieur
,
C
Grabielle-Madelmont
, and
M.
Paternostre
,
Biochim. Biophys. Acta
1508
,
34
(
2000
).
16.
R.
Capovilla
,
J.
Guven
, and
J. A.
Santiago
,
Phys. Rev. E
66
,
021607
(
2002
).
17.
Z. C.
Tu
and
Z. C.
Ou-Yang
,
Phys. Rev. E
68
,
061915
(
2003
).
18.
G.
Battaglia
and
A. J.
Ryan
,
Nature Mater.
4
,
869
(
2005
).
19.
T. M.
Weiss
,
T.
Narayanan
, and
M.
Gradzielski
,
Langmuir
24
,
3759
(
2008
).
20.
K.
Bryskhe
,
S.
Bulut
, and
U.
Olsson
,
J. Phys. Chem. B
109
,
9265
(
2005
).
21.
A.
Veronese
,
N.
Berclaz
, and
P. L.
Luisi
,
J. Phys. Chem. B
102
,
7078
(
1998
).
22.
X.
Luo
,
W.
Miao
,
S.
Wu
, and
Y.
Liang
,
Langmuir
18
,
9611
(
2002
).
23.
J.
Hao
,
J.
Wang
,
W.
Liu
,
R.
Abdel-Rahem
, and
H.
Hoffmann
,
J. Phys. Chem. B
108
,
1168
(
2004
).
24.
H.
Kawasaki
,
M.
Souda
,
S.
Tanaka
,
N.
Nemoto
,
G.
Karlsson
,
M.
Almgren
, and
H.
Maeda
,
J. Phys. Chem. B
106
,
1524
(
2002
).
25.
B. J.
Reynwar
,
G.
Illya
,
V. A.
Harmandaris
,
M. M.
Müller
,
K.
Kremer
, and
M.
Deserno
,
Nature (London)
447
,
461
(
2007
).
26.
L.
Courbin
,
J. P.
Delville
,
J.
Rouch
, and
P.
Panizza
,
Phys. Rev. Lett.
89
,
148305
(
2002
).
27.
T. M.
Weiss
,
T.
Narayanan
,
C.
Wolf
,
M.
Gradzielski
,
P.
Panine
,
S.
Finet
, and
W. I.
Helsby
,
Phys. Rev. Lett.
94
,
038303
(
2005
).
28.
H. -G.
Döbereiner
,
E.
Evans
,
M.
Kraus
,
U.
Seifert
, and
M.
Wortis
,
Phys. Rev. E
55
,
4458
(
1997
).
29.
M.
Venturoli
,
M. M.
Sperotto
,
M.
Kranenburg
, and
B.
Smit
,
Phys. Rep.
437
,
1
(
2006
).
30.
H.
Noguchi
and
M.
Takasu
,
Phys. Rev. E
64
,
041913
(
2001
).
31.
V.
Knecht
and
S. J.
Marrink
,
Biophys. J.
92
,
4254
(
2007
).
32.
S.
Yamamoto
,
Y.
Maruyama
, and
S.
Hyodo
,
J. Chem. Phys.
116
,
5842
(
2002
).
33.
N.
Arai
,
K.
Yasuoka
, and
Y.
Masubuchi
,
J. Chem. Phys.
126
,
244905
(
2007
).
34.
J. M.
Drouffe
,
A. C.
Maggs
, and
S.
Leibler
,
Science
254
,
1353
(
1991
).
35.
D. J.
Michel
and
D. J.
Cleaver
,
J. Chem. Phys.
126
,
034506
(
2007
).
36.
S. J.
Marrink
,
D. P.
Tieleman
, and
A. E.
Mark
,
J. Phys. Chem. B
104
,
12165
(
2000
).
37.
H.
Noguchi
and
G.
Gompper
,
J. Chem. Phys.
125
,
164908
(
2006
).
38.
P.
Ballone
and
P. M.
Del Pópolo
,
Phys. Rev. E
73
,
031404
(
2006
).
39.
S. J.
Marrink
and
A. E.
Mark
,
J. Am. Chem. Soc.
125
,
15233
(
2003
).
40.
A. H.
de Vries
,
A. E.
Mark
, and
S. J.
Marrink
,
J. Am. Chem. Soc.
126
,
4488
(
2004
).
41.
P. M.
Kasson
,
N. W.
Kelley
,
N.
Singhal
,
M.
Vrljic
,
A. T.
Brunger
, and
V. S.
Pande
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
11916
(
2006
).
42.
S. J.
Marrink
,
J.
Risselada
, and
A. E.
Mark
,
Chem. Phys. Lipids
135
,
223
(
2005
).
43.
B. Y.
Wong
and
R.
Faller
,
Biochim. Biophys. Acta
1768
,
620
(
2007
).
44.
K.
Dimitrievski
and
B.
Kasemo
,
Langmuir
24
,
4077
(
2008
).
45.
S.
Leekumjorn
and
A. K.
Sum
,
Biochim. Biophys. Acta
1768
,
354
(
2007
).
46.
M.
Orsi
,
D. Y.
Haubertin
,
W. E.
Sanderson
, and
J. W.
Essex
,
J. Phys. Chem. B
112
,
802
(
2008
).
47.
T.
Murtola
,
E.
Falck
,
M.
Patra
,
M.
Karttunen
, and
I.
Vattulainen
,
J. Chem. Phys.
121
,
9156
(
2004
).
48.
D.
Bemporad
,
J. W.
Essex
, and
C.
Luttmann
,
J. Phys. Chem. B
108
,
4875
(
2004
).
49.
E. R.
May
,
A.
Narang
, and
D. I.
Kopelevich
,
Phys. Rev. E
76
,
021913
(
2007
).
50.
C. F.
Lopez
,
S. O.
Nielsen
,
P. B.
Moore
,
J. C.
Shelley
, and
M. L.
Klein
,
J. Phys.: Condens. Matter
14
,
9431
(
2002
).
51.
W.
Helfrich
,
Z. Naturforsch. C
28
,
693
(
1973
).
52.
D.
Ni
,
H.
Shi
, and
Y.
Yin
,
Colloids Surf., B
46
,
162
(
2005
).
53.
S.
Lorenzen
,
R. M.
Servuss
, and
W.
Helfrich
,
Biophys. J.
50
,
565
(
1986
).
54.
L. M.
Bergström
,
J. Colloid Interface Sci.
293
,
181
(
2006
).
55.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
deVries
,
J. Phys. Chem. B
111
,
7812
(
2007
).
56.
R.
Notman
,
M. G.
Noro
, and
J.
Anwar
,
J. Phys. Chem. B
111
,
12748
(
2007
).
57.
C.
Xing
and
R.
Faller
,
J. Phys. Chem. B
112
,
7086
(
2008
).
58.
W. F.
Van Gunsteren
and
H. J. C.
Berendsen
,
Mol. Simul.
1
,
173
(
1988
).
59.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
60.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
,
1701
(
2005
).
61.
D. D.
Lasic
,
R.
Joannic
,
B. C.
Keller
,
P. M.
Frederik
, and
L.
Auvray
,
Adv. Colloid Interface Sci.
89–90
,
337
(
2001
).
62.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
63.
H. -T.
Jung
,
S. Y.
Lee
,
E. W.
Kaler
,
B.
Coldren
, and
J. A.
Zasadzinski
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
15318
(
2002
).
64.
H. S.
Bu
,
E. Q.
Chen
,
S. Y.
Xu
,
K. X.
Guo
, and
B.
Wunderlich
,
J. Polym. Sci., Part B: Polym. Phys.
32
,
1351
(
1994
).
65.
See EPAPS Document No. E-JCPSA6-130-013908 for supplemental data on energy curves of lipid balls. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.

Supplementary Material

You do not currently have access to this content.