Scanning tunneling microscopy studies reveal that trace amounts of adsorbed S below a critical coverage on the order of 10mML have little effect on the coarsening and decay of monolayer Ag adatom islands on Ag(111) at 300K. In contrast, above this critical coverage, decay is greatly accelerated. This critical value appears to be determined by whether all S can be accommodated at step edges. Accelerated coarsening derives from the feature that the excess S (above that incorporated at steps) produces significant populations on the terraces of metal-sulfur complexes, which are stabilized by strong Ag–S bonding. These include AgS2, Ag2S2, Ag2S3, and Ag3S3. Such complexes are sufficiently populous and mobile that they can potentially lead to greatly enhanced metal mass transport across the surface. This picture is supported by density functional theory analysis of the relevant energetics, as well as by reaction-diffusion equation modeling to assess the mechanism and degree of enhanced coarsening.

1.
L.
Ratke
and
P. W.
Voorhees
,
Coarsening and Growth: Ostwald Ripening in Materials Processes
(
Springer
,
Berlin
,
2001
).
2.
M.
Zinke-Allmang
,
L. C.
Feldman
, and
M. H.
Grabow
,
Surf. Sci. Rep.
16
,
377
(
1992
).
3.
K.
Morgenstern
,
Phys. Status Solidi B
242
,
773
(
2005
).
4.
5.
P. A.
Thiel
and
J. W.
Evans
,
J. Phys. Chem. B
104
,
1663
(
2000
).
6.
P. A.
Thiel
,
M.
Shen
,
D.-J.
Liu
, and
J. W.
Evans
, “
Coarsening of two-dimensional nanoclusters on metal surfaces
” (Centennial Feature Article),
J. Phys. Chem. C
(in press).
7.
J.
Perdereau
and
G. E.
Rheed
,
Surf. Sci.
7
,
175
(
1967
).
8.
P. J. F.
Harris
,
Int. Mater. Rev.
40
,
97
(
1995
).
9.
D. R.
Peale
and
B. H.
Cooper
,
J. Vac. Sci. Technol. A
10
,
2210
(
1992
).
10.
G.
Yang
and
G.-Y.
Liu
,
J. Phys. Chem. B
107
,
8746
(
2003
).
11.
M. M.
Biener
,
J.
Biener
, and
C. M.
Friend
,
Langmuir
21
,
1668
(
2005
).
12.
S. Y.
Quek
,
M. M.
Biener
,
J.
Biener
,
J.
Bhattacharjee
,
C. M.
Friend
,
U. V.
Waghmare
, and
E.
Kaxiras
,
J. Phys. Chem. B
110
,
15663
(
2006
).
13.
M. M.
Biener
,
J.
Biener
, and
C. M.
Friend
,
Surf. Sci.
601
,
1659
(
2007
).
14.
B. K.
Min
,
X.
Ding
,
D.
Pinnaduwage
, and
C. M.
Friend
,
Phys. Rev. B
72
,
121410
(
2005
).
15.
B. K.
Min
,
A. R.
Alemozafar
,
M. M.
Biener
,
J.
Biener
, and
C. M.
Friend
,
Top. Catal.
36
,
77
(
2005
).
16.
J.
Kibsgaard
,
K.
Morgenstern
,
E.
Laegsgaard
,
J. V.
Lauritsen
, and
F.
Besenbacher
,
Phys. Rev. Lett.
100
,
116104
(
2008
).
17.
K.
Morgenstern
,
E.
Laegsgaard
, and
F.
Besenbacher
,
Surf. Sci.
602
,
661
(
2008
).
18.
A. R.
Layson
and
P. A.
Thiel
,
Surf. Sci.
472
,
L151
(
2001
).
19.
A. R.
Layson
,
J. W.
Evans
, and
P. A.
Thiel
,
Phys. Rev. B
65
,
193409
(
2002
).
20.
A. R.
Layson
,
J. W.
Evans
, and
P. A.
Thiel
,
J. Chem. Phys.
118
,
6467
(
2003
).
21.
K.
Pohl
,
J.
de la Figuera
,
M. C.
Bartelt
,
N. C.
Bartelt
,
P. J.
Feibelman
, and
R. Q.
Hwang
,
Bulletin American Physical Society
44
,
1716
(
1999
).
22.
P. J.
Feibelman
,
Phys. Rev. Lett.
85
,
606
(
2000
).
23.
W. L.
Ling
,
N. C.
Bartelt
,
K.
Pohl
,
J.
de la Figuera
,
R. Q.
Hwang
, and
K. F.
McCarty
,
Phys. Rev. Lett.
93
,
166101
(
2004
). Note that the diffusion length appearing in this analysis should be defined as LD=(D1α)(1+R)12, where R=(c1eqD1)(c2eqD2).
24.
S.
Horch
,
H. T.
Lorensen
,
S.
Helveg
,
E.
Laegsgaard
,
I.
Stensgaard
,
K. W.
Jacobsen
,
J. K.
Norskov
, and
F.
Besenbacher
,
Nature (London)
398
,
398
(
1999
).
25.
G. L.
Kellogg
,
Phys. Rev. Lett.
79
,
4417
(
1997
).
26.
J.
Nara
,
T.
Sasaki
, and
T.
Ohno
,
Phys. Rev. Lett.
79
,
4421
(
1999
).
27.
Q.
Chen
and
N. V.
Richardson
,
Prog. Surf. Sci.
73
,
59
(
2003
).
28.
See, e.g.,
M.
Kalff
,
G.
Comsa
, and
T.
Michely
,
Phys. Rev. Lett.
81
,
1255
(
1998
).
29.
W. F.
Egelhoff
,
P. C.
Chen
,
C. J.
Powell
,
M. D.
Stiles
, and
R. D.
McMichael
,
J. Appl. Phys.
79
,
2491
(
1996
).
30.
For the Materials Preparation Center, see www.mpc.ameslab.gov
31.
C. J.
Chen
,
Introduction to Scanning Tunneling Microscopy
(
Oxford University Press
,
New York
,
1993
).
32.
C.
Wagner
,
J. Chem. Phys.
21
,
1819
(
1953
).
33.
M.
Shen
,
D.-J.
Liu
,
C. J.
Jenks
, and
P. A.
Thiel
,
J. Phys. Chem. C
112
,
4281
(
2008
).
34.
K.
Schwaha
,
N. D.
Spencer
, and
R. M.
Lambert
,
Surf. Sci.
81
,
273
(
1979
).
35.
G.
Rovida
and
F.
Pratesi
,
Surf. Sci.
104
,
609
(
1981
).
36.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
37.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
38.
G.
Kresse
and
J.
Furtmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
39.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
40.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
41.
M.
Methfessel
and
A. T.
Paxton
,
Phys. Rev. B
40
,
3616
(
1989
).
42.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
43.
M.
Shen
,
J. M.
Wen
,
C. J.
Jenks
,
P. A.
Thiel
,
D.-J.
Liu
, and
J. W.
Evans
,
Phys. Rev. B
75
,
245409
(
2007
).
44.
K.
Morgenstern
,
G.
Rosenfeld
,
E.
Laegsgaard
,
F.
Besenbacher
, and
G.
Comsa
,
Phys. Rev. Lett.
80
,
556
(
1998
).
45.
K.
Morgenstern
,
G.
Rosenfeld
, and
G.
Comsa
,
Surf. Sci.
441
,
289
(
1999
).
46.
J. W.
Evans
,
P. A.
Thiel
, and
M. C.
Bartelt
,
Surf. Sci. Rep.
61
,
1
(
2006
).
47.

DFT analysis for a six-layer Ag slab yields Eads(Ebind)2.22 (−), 4.63 (−), 6.92 (0.07), 12.19 (0.71), 14.54 (0.84), 19.50 (1.17), and 11.57(2.02)eV for Ag, S, AgS, AgS2 (linear), Ag2S2 (bent), Ag2S3, and Ag3S3 (fcc-t).

48.
C. M.
Chang
,
C. M.
Wei
, and
S. P.
Chen
,
Phys. Rev. Lett.
85
,
1044
(
2000
).
49.
C.
Busse
,
C.
Polop
,
M.
Mueller
,
K.
Albe
,
U.
Linke
, and
T.
Michely
,
Phys. Rev. Lett.
91
,
056103
(
2003
).
50.

Note also the identity RCCCLC(C)2=RCCCLC(C)2=θCeqθCeqθCCeq.

51.

Here, one has JMTOT(DM3S3θM3S3equilρMmax)(θMequilLisl), but this regime may not be realized for increasing θS given that both LM(M2S3)Lisl and RMM3S3 decrease.

52.

Eeff(Cu3S3) is the sum of Eform(Cu3S3)0.28eV and Ed(Cu3S3)0.35eV. Eeff(Cu) is the sum of Eform(Cu)=0.79eV and Ed(Cu)=0.05eV.

53.
M.
Yamada
,
H.
Hirashima
,
A.
Kitada
,
K.
Izumi
, and
J.
Nakamura
,
Surf. Sci.
602
,
1659
(
2008
).
54.
H. C.
Jeong
and
E. D.
Williams
,
Surf. Sci. Rep.
34
,
171
(
1999
).
55.
T.
Stasevich
and
T. L.
Einstein
,
SIAM Multiscale Mod. Sim.
6
,
90
(
2007
).
56.
T. J.
Stasevich
,
H.
Gebremariam
,
T. L.
Einstein
,
M.
Giesen
,
C.
Steimer
, and
H.
Ibach
,
Phys. Rev. B
71
,
245414
(
2005
).
57.
C. G.
Tao
,
T. J.
Stasevich
,
W. G.
Cullen
,
T. L.
Einstein
, and
E. D.
Williams
,
Nano Lett.
7
,
1495
(
2007
).
You do not currently have access to this content.