We consider the kinetics of diffusion-influenced reactions which involve a reactant species that can be modeled as a sphere with two reactive patches located on its surface at an arbitrary angular distance. An approximate analytic expression for the rate coefficient is derived based on the Wilemski–Fixman–Weiss decoupling approximation and a multivariable Padé approximation. The accuracy of the rate expression is evaluated against computer simulations as well as an exact analytic expression available for a special case. The present theory provides accurate estimates for the magnitude of diffusive interference effects between the two reactive patches. We also present an efficient Brownian dynamics method for calculating the time-dependent rate coefficient, which is applicable when the reactants involve multiple active sites.

1.
O. G.
Berg
and
P. H.
von Hippel
,
Annu. Rev. Biophys. Biophys. Chem.
14
,
131
(
1985
).
2.
C. R.
Cantor
and
P. R.
Schimmel
,
Biophysical Chemistry
(
Freeman
,
San Francisco
,
1980
), Pt. III.
3.
F.
Piazza
,
P.
De Los Rios
,
D.
Fanelli
,
L.
Bongini
, and
U.
Skoglund
,
Eur. Biophys. J.
34
,
899
(
2005
).
4.
J. A.
McCammon
and
S. C.
Harvey
,
Dynamics of Proteins and Nucleic Acids
(
Cambridge University Press
,
Cambridge
,
1987
).
5.
K.
Solc
and
W. H.
Stockmayer
,
J. Chem. Phys.
54
,
2981
(
1971
).
6.
D.
Shoup
,
G.
Lipari
, and
A.
Szabo
,
Biophys. J.
36
,
697
(
1981
).
7.
S.
Lee
and
M.
Karplus
,
J. Chem. Phys.
86
,
1904
(
1987
).
8.
A. I.
Shushin
,
Chem. Phys. Lett.
130
,
452
(
1986
);
9.
A. V.
Barzykin
and
A. I.
Shushin
,
Biophys. J.
80
,
2062
(
2001
).
10.
S. A.
Allison
and
J. A.
McCammon
,
J. Phys. Chem.
89
,
1072
(
1985
).
11.
R.
Zwanzig
and
A.
Szabo
,
Biophys. J.
60
,
671
(
1991
).
12.
S. H.
Northrup
,
J. Phys. Chem.
92
,
5847
(
1988
).
13.
A. M.
Berezhkovskii
,
Y. A.
Makhnovskii
,
M. I.
Monine
,
V. Y.
Zitserman
, and
S. Y.
Shvartsman
,
J. Chem. Phys.
121
,
11390
(
2004
).
14.
I. A.
Pritchin
and
K. M.
Salikhov
,
J. Phys. Chem.
89
,
5212
(
1985
).
15.
S. D.
Traytak
and
A. V.
Barzykin
,
J. Chem. Phys.
127
,
215103
(
2007
).
16.
J.
Uhm
,
J.
Lee
,
C.
Eun
, and
S.
Lee
,
J. Chem. Phys.
125
,
054911
(
2006
).
17.
K. L.
Ivanov
and
N. N.
Lukzen
,
J. Chem. Phys.
128
,
155105
(
2008
).
18.
S.
Lee
and
M.
Karplus
,
J. Chem. Phys.
86
,
1883
(
1987
).
19.
G. A.
Baker
, Jr.
and
P.
Graves-Morris
,
Padé Approximants
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1966
).
20.
Z. X.
Wang
and
D. R.
Guo
,
Special Functions
(
World Scientific
,
Singapore
,
1989
).
21.
O. G.
Berg
,
Biophys. J.
47
,
1
(
1985
).
22.
S. H.
Northrup
,
S. A.
Allison
, and
J. A.
McCammon
,
J. Chem. Phys.
80
,
1517
(
1984
).
23.
S. A.
Allison
,
S. H.
Northrup
, and
J. A.
McCammon
,
J. Chem. Phys.
83
,
2894
(
1985
).
24.
S. H.
Northrup
,
M. S.
Curvin
,
S. A.
Allison
, and
J. A.
McCammon
,
J. Chem. Phys.
84
,
2196
(
1986
).
25.
S.
Yang
,
J.
Kim
, and
S.
Lee
,
J. Chem. Phys.
111
,
10119
(
1999
).
26.
J.
Lee
,
S.
Yang
,
J.
Kim
, and
S.
Lee
,
J. Chem. Phys.
120
,
7564
(
2004
).
27.
G.
Lamm
and
K.
Schulten
,
J. Chem. Phys.
78
,
2713
(
1983
).
28.
G.
Lamm
,
J. Chem. Phys.
80
,
2845
(
1984
).
You do not currently have access to this content.