We show that the recently developed phaseless auxiliary-field quantum Monte Carlo (AFQMC) method can be used to study excited states, providing an alternative to standard quantum chemistry methods. The phaseless AFQMC approach, whose computational cost scales as M3-M4 with system size M, has been shown to be among the most accurate many-body methods in ground state calculations. For excited states, prevention of collapse into the ground state and control of the Fermion sign/phase problem are accomplished by the approximate phaseless constraint with a trial wave function. Using the challenging C2 molecule as a test case, we calculate the potential energy curves of the ground and two low-lying singlet excited states. The trial wave function is obtained by truncating complete active space wave functions, with no further optimization. The phaseless AFQMC results using a small basis set are in good agreement with exact full configuration-interaction calculations, while those using large basis sets are in good agreement with experimental spectroscopic constants.

1.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
2.
G.
Onida
,
L.
Reining
, and
A.
Rubio
,
Rev. Mod. Phys.
74
,
601
(
2002
).
3.
T.
Klüner
,
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
J. Chem. Phys.
116
,
42
(
2002
).
4.
Q. -M.
Hu
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. Lett.
98
,
176103
(
2007
).
5.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
), and references therein.
6.
W. M. C.
Foulkes
,
R. Q.
Hood
, and
R. J.
Needs
,
Phys. Rev. B
60
,
4558
(
1999
).
7.
J. C.
Grossman
,
M.
Rohlfing
,
L.
Mitas
,
S. G.
Louie
, and
M. L.
Cohen
,
Phys. Rev. Lett.
86
,
472
(
2001
).
8.
F.
Schautz
,
F.
Buda
, and
C.
Filippi
,
J. Chem. Phys.
121
,
5836
(
2004
).
9.
S.
Zhang
and
H.
Krakauer
,
Phys. Rev. Lett.
90
,
136401
(
2003
).
10.
W. A.
Al-Saidi
,
H.
Krakauer
, and
S.
Zhang
,
Phys. Rev. B
73
,
075103
(
2006
).
11.
W. A.
Al-Saidi
,
S.
Zhang
, and
H.
Krakauer
,
J. Chem. Phys.
124
,
224101
(
2006
).
12.
M.
Suewattana
,
W.
Purwanto
,
S.
Zhang
,
H.
Krakauer
, and
E. J.
Walter
,
Phys. Rev. B
75
,
245123
(
2007
).
13.
S.
Zhang
,
H.
Krakauer
,
W. A.
Al-Saidi
, and
M.
Suewattana
,
Comput. Phys. Commun.
169
,
394
(
2005
).
14.
H.
Kwee
,
S.
Zhang
, and
H.
Krakauer
,
Phys. Rev. Lett.
100
,
126404
(
2008
).
15.
W. A.
Al-Saidi
,
H.
Krakauer
, and
S.
Zhang
,
J. Chem. Phys.
125
,
154110
(
2006
).
16.
W. A.
Al-Saidi
,
H.
Krakauer
, and
S.
Zhang
,
J. Chem. Phys.
126
,
194105
(
2007
).
17.
W. A.
Al-Saidi
,
S.
Zhang
, and
H.
Krakauer
,
J. Chem. Phys.
127
,
144101
(
2007
).
18.
W.
Purwanto
,
W. A.
Al-Saidi
,
H.
Krakauer
, and
S.
Zhang
,
J. Chem. Phys.
128
,
114309
(
2008
).
19.
M. L.
Abrams
and
C. D.
Sherrill
,
J. Chem. Phys.
121
,
9211
(
2004
).
20.
C. J.
Umrigar
,
J.
Toulouse
,
C.
Filippi
,
S.
Sorella
, and
R. G.
Hennig
,
Phys. Rev. Lett.
98
,
110201
(
2007
).
21.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
,
J. Chem. Inf. Model.
47
,
1045
(
2007
).
22.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
23.
P. J.
Reynolds
,
D. M.
Ceperley
,
B. J.
Alder
, and
W. A.
Lester
,
J. Chem. Phys.
77
,
5593
(
1982
).
24.
D. M.
Ceperley
and
B. J.
Alder
,
J. Chem. Phys.
81
,
5833
(
1984
).
25.
S.
Zhang
and
M. H.
Kalos
,
Phys. Rev. Lett.
67
,
3074
(
1991
).
26.
S.
Zhang
, in
Quantum Monte Carlo Methods in Physics and Chemistry
, edited by
M. P.
Nightingale
and
C. J.
Umrigar
(
Kluwer Academic
,
Dordrecht
,
1999
), e-print arXiv:cond-mat/9909090.
27.
N.
Rom
,
D. M.
Charutz
, and
D.
Neuhauser
,
Chem. Phys. Lett.
270
,
382
(
1997
).
28.
R.
Baer
,
M.
Head-Gordon
, and
D.
Neuhauser
,
J. Chem. Phys.
109
,
6219
(
1998
).
29.
J.
Hubbard
,
Phys. Rev. Lett.
3
,
77
(
1959
).
30.
R. D.
Stratonovich
,
Dokl. Akad. Nauk SSSR
115
,
1907
(
1957
).
31.
J.
Carlson
,
J. E.
Gubernatis
,
G.
Ortiz
, and
S.
Zhang
,
Phys. Rev. B
59
,
12788
(
1999
).
32.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
33.
W.
Purwanto
and
S.
Zhang
,
Phys. Rev. E
70
,
056702
(
2004
).
34.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S. J.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
35.
The CASSCF natural orbitals were also used to construct an alternative determinantal expansion of the full CASSCF wave function, which then was truncated in the usual way. For large ND60, truncating the alternative CAS wave function yielded essentially identical AFQMC energies as the original truncation. For smaller ND, however, convergence of the AFQMC energy was slower than with the original method of truncation.
36.
E.
Aprà
,
T.
Windus
,
T.
Straatsma
, et al., NWCHEM, A Computational Chemistry Package for Parallel Computers, Version 4.6, Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA,
2004
.
37.
W.
Purwanto
and
S.
Zhang
,
Phys. Rev. A
72
,
053610
(
2005
).
38.
S.
Zhang
,
J.
Carlson
, and
J. E.
Gubernatis
,
Phys. Rev. B
55
,
7464
(
1997
).
39.
C. D.
Sherrill
and
P.
Piecuch
,
J. Chem. Phys.
122
,
124104
(
2005
).
40.
S.
Sorella
,
M.
Casula
, and
D.
Rocca
,
J. Chem. Phys.
127
,
014105
(
2007
).
41.
J.
Toulouse
and
C. J.
Umrigar
,
J. Chem. Phys.
128
,
174101
(
2008
).
42.
The spin up valence orbitals of |UHFax can be described as 2(spz)σg, [2(s+pz)σu+2pxπg], (2pzσg+2pxπu), and 2pyπu.
43.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
44.
M.
Boggio-Pasqua
,
A.
Voronin
,
P.
Halvick
, and
J. -C.
Rayez
,
J. Mol. Struct.: THEOCHEM
531
,
159
(
2000
).
You do not currently have access to this content.