In a previous paper [Ghysels et al., J. Chem. Phys.126, 224102 (2007)] the mobile block Hessian (MBH) approach was presented. The method was designed to accurately compute vibrational modes of partially optimized molecular structures. The key concept was the introduction of several blocks of atoms, which can move as rigid bodies with respect to a local, fully optimized subsystem. The choice of the blocks was restricted in the sense that none of them could be connected, and also linear blocks were not taken into consideration. In this paper an extended version of the MBH method is presented that is generally applicable and allows blocks to be adjoined by one or two common atoms. This extension to all possible block partitions of the molecule provides a structural flexibility varying from very rigid to extremely relaxed. The general MBH method is very well suited to study selected normal modes of large macromolecules (such as proteins and polymers) because the number of degrees of freedom can be greatly reduced while still keeping the essential motions of the molecular system. The reduction in the number of degrees of freedom due to the block linkages is imposed here directly using a constraint method, in contrast to restraint methods where stiff harmonic couplings are introduced to restrain the relative motion of the blocks. The computational cost of this constraint method is less than that of an implementation using a restraint method. This is illustrated for the α-helix conformation of an alanine-20-polypeptide.

1.
J. P.
Wang
,
J. X.
Chen
, and
R. M.
Hochstrasser
,
J. Phys. Chem. B
110
,
7545
(
2006
).
3.
R.
Schweitzer-Stenner
,
J. Phys. Chem. B
108
,
16965
(
2004
).
4.
N. A.
Besley
and
K. A.
Metcalf
,
J. Chem. Phys.
126
,
035101
(
2007
).
5.
L.
Zhou
and
A.
Siegelbaum
,
Biophys. J.
94
,
3461
(
2008
).
6.
G. J.
Thomas
,
Annu. Rev. Biophys. Biomol. Struct.
28
,
1
(
1999
).
7.
M. D.
Calvin
,
J. D.
Head
, and
S. Q.
Jin
,
Surf. Sci.
345
,
161
(
1996
).
8.
A.
Ghysels
,
D.
Van Neck
,
V.
Van Speybroeck
,
T.
Verstraelen
, and
M.
Waroquier
,
J. Chem. Phys.
126
,
224102
(
2007
).
9.
F.
Tama
,
F. X.
Gadea
,
O.
Marques
, and
Y. H.
Sanejouand
,
Proteins: Struct., Funct., Genet.
41
,
1
(
2000
).
10.
F.
Tama
and
C. L.
Brooks
,
J. Mol. Biol.
318
,
733
(
2002
).
12.
H.
Li
and
J. H.
Jensen
,
Theor. Chem. Acc.
107
,
211
(
2002
).
13.
A.
Ghysels
,
V.
Van Speybroeck
,
T.
Verstraelen
,
D.
Van Neck
, and
M.
Waroquier
,
J. Chem. Theory Comput.
4
,
614
(
2008
).
14.
V. D.
Dominguez-Soria
,
P.
Calaminici
, and
A.
Goursot
,
J. Chem. Phys.
127
,
154710
(
2007
).
15.
P. A.
Molina
and
J. H.
Jensen
,
J. Phys. Chem. B
107
,
6226
(
2003
).
16.
A.
Ghysels
,
D.
Van Neck
, and
M.
Waroquier
,
J. Chem. Phys.
127
,
164108
(
2007
).
17.
B. R.
Brooks
,
R. E.
Bruccoleri
,
B. D.
Olafson
,
D. J.
States
,
S.
Swaminathan
, and
M..
Karplus
,
J. Comput. Chem.
4
,
187
(
1983
).
18.
Y.
Shao
,
L. F.
Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C. P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
19.
For the latest release of ADF, visit http://www.scm.com.
20.
C.
Herrmann
,
J.
Neugebauer
, and
M.
Reiher
,
J. Comput. Chem.
29
,
2460
(
2008
).
21.
A.
Ghysels
,
V.
Van Speybroeck
,
D.
Van Neck
,
E.
Pauwels
,
B. R.
Brooks
, and
M.
Waroquier
, “
Mobile Block Hessian approach with adjoined blocks: An efficient approach for the calculation of frequencies in macromolecules
,”
J. Chem. Theory Comput.
(unpublished).
22.
S. Q.
Jin
and
J. D.
Head
,
Surf. Sci.
318
,
204
(
1994
).
25.
O.
Marques
and
Y. H.
Sanejouand
,
Proteins: Struct., Funct., Genet.
23
,
57
(
1995
).
26.
27.
28.
H. L.
Woodcock
,
W.
Zheng
,
A.
Ghysels
,
Y.
Shao
,
J.
Kong
, and
B. R.
Brooks
,
J. Chem. Phys.
129
,
214109
(
2008
).
29.
For more information on the Python programming language, see http://www.python.org.
You do not currently have access to this content.