Monte Carlo simulations for the restricted primitive model of an electrolyte solution above the critical temperature are performed at a wide range of concentrations and temperatures. Thermodynamic properties such as internal energy, osmotic coefficient, activity coefficient, as well as spatial correlation functions are determined. These observables are used to investigate whether quasiuniversality in terms of an effective screening length exists, similar to the role played by the effective electron mass in solid-state physics. To that end, an effective screening length is extracted from the asymptotic behavior of the Fourier-transformed charge-correlation function and plugged into the Debye–Hückel limiting expressions for various thermodynamic properties. Comparison with numerical results is favorable, suggesting that correlation and other effects not captured on the Debye–Hückel limiting level can be successfully incorporated by a single effective parameter while keeping the functional form of Debye–Hückel expressions. We also compare different methods to determine mean ionic activity coefficient in molecular simulations and check the internal consistency of the numerical data.

1.
P.
Debye
and
E.
Hückel
,
Phys. Z.
24
,
185
(
1923
).
2.
L. M.
Varela
,
M.
García
, and
V.
Mosquera
,
Phys. Rep.
382
,
1
(
2003
).
3.
R. R.
Netz
and
H.
Orland
,
Europhys. Lett.
45
,
726
(
1999
).
4.
R. R.
Netz
and
H.
Orland
,
Eur. Phys. J. E
1
,
67
(
2000
).
5.
R. R.
Netz
and
H.
Orland
,
Eur. Phys. J. E
1
,
203
(
2000
).
6.
B. P.
Lee
and
M. E.
Fisher
,
Europhys. Lett.
39
,
611
(
1997
).
7.
C.
Caccamo
,
Phys. Rep.
274
,
1
(
1996
).
8.
D. N.
Card
and
J. P.
Valleau
,
J. Chem. Phys.
52
,
6232
(
1970
).
9.
B.
Larsen
,
J. Chem. Phys.
65
,
3431
(
1976
).
10.
J. P.
Valleau
and
L. K.
Cohen
,
J. Chem. Phys.
72
,
5935
(
1980
).
11.
M. C.
Abramo
,
C.
Caccamo
, and
G.
Pizzimenti
,
J. Chem. Phys.
78
,
357
(
1983
).
12.
M. C.
Abramo
,
C.
Caccamo
,
G.
Pizzimenti
, and
S. A.
Rodge
,
J. Chem. Phys.
80
,
4396
(
1984
).
13.
V.
Vlachy
,
T.
Ichiye
, and
A. D. J.
Haymet
,
J. Am. Chem. Soc.
113
,
1077
(
1991
).
14.
A. P.
Lyubartsev
,
A. A.
Martsinovski
,
S. V.
Shevkunov
, and
P. N.
Vorontsov-Velyaminov
,
J. Chem. Phys.
96
,
1776
(
1992
).
15.
G.
Hummer
and
D. M.
Soumpasis
,
J. Chem. Phys.
98
,
581
(
1993
).
16.
J. M.
Caillol
,
J. Chem. Phys.
100
,
2161
(
1994
).
17.
G.
Orkoulas
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
101
,
1452
(
1994
).
18.
F.
Bresme
,
E.
Lomba
,
J. J.
Weis
, and
J. L. F.
Abascal
,
Phys. Rev. E
51
,
289
(
1995
).
19.
J. M.
Caillol
and
J. J.
Weis
,
J. Chem. Phys.
102
,
7610
(
1995
).
20.
C.
Vega
,
F.
Bresme
, and
J. L. F.
Abascal
,
Phys. Rev. E
54
,
2746
(
1996
).
21.
J. M.
Caillol
,
J. Chem. Phys.
111
,
6528
(
1999
).
22.
J. C.
Shelley
and
G. N.
Patey
,
J. Chem. Phys.
110
,
1633
(
1999
).
23.
T. J.
VanderNoot
,
Phys. Chem. Chem. Phys.
2
,
253
(
2000
).
24.
S.
Hanassab
and
T. J.
VanderNoot
,
J. Electroanal. Chem.
528
,
135
(
2002
).
25.
C.
Vega
,
J. L. F.
Abascal
,
C.
McBride
, and
F.
Bresme
,
J. Phys. Chem.
119
,
964
(
2003
).
26.
F. H.
Stillinger
and
R.
Lovett
,
J. Chem. Phys.
48
,
3858
(
1968
);
F. H.
Stillinger
and
R.
Lovett
,
J. Chem. Phys.
49
,
1991
(
1968
).
27.
P.
Attard
,
Phys. Rev. E
48
,
3604
(
1993
).
28.
S.
Alexander
,
P. M.
Chaikin
,
P.
Grant
,
G. J.
Morales
,
P.
Pincus
, and
D.
Hone
,
J. Chem. Phys.
80
,
5776
(
1984
).
29.
L.
Bocquet
,
E.
Trizac
, and
M.
Aubouy
,
J. Chem. Phys.
117
,
8138
(
2002
).
30.
R.
Kjellander
and
D. J.
Mitchel
,
Chem. Phys. Lett.
200
,
76
(
1992
).
31.
R.
Kjellander
and
D. J.
Mitchel
,
J. Chem. Phys.
101
,
603
(
1994
).
32.
J.
Ennis
,
R.
Kjellander
, and
D. J.
Mitchel
,
J. Chem. Phys.
102
,
975
(
1995
).
33.
J.
Ulander
and
R.
Kjellander
,
J. Chem. Phys.
109
,
9508
(
1998
).
34.
A.
McBride
,
M.
Kohonen
, and
P.
Attard
,
J. Chem. Phys.
109
,
2423
(
1998
).
35.
L. M.
Varela
,
M.
Perez-Rodriguez
,
M.
García
,
F.
Sarmiento
, and
V.
Mosquera
,
J. Chem. Phys.
109
,
1930
(
1998
).
36.
L. M.
Varela
,
M.
Perez-Rodriguez
,
M.
García
, and
V.
Mosquera
,
J. Chem. Phys.
113
,
292
(
2000
).
37.
L. M.
Varela
,
J. M.
Ruso
,
M.
García
, and
V.
Mosquera
,
J. Chem. Phys.
113
,
10174
(
2000
).
38.
J.
Ulander
and
R.
Kjellander
,
J. Chem. Phys.
114
,
4893
(
2001
).
39.
S. F.
Schulz
,
T.
Gisler
,
M.
Borkovec
, and
H.
Stichter
,
J. Colloid Interface Sci.
164
,
88
(
1994
).
40.
T.
Gisler
,
S. F.
Schulz
,
M.
Borkovec
,
H.
Sticher
,
P.
Schurtenberger
,
B.
Daguanno
, and
R.
Klein
,
J. Chem. Phys.
101
,
9924
(
1994
).
41.
J. M.
Roberts
J. J.
O’Dea
, and
J. G.
Osteryoung
,
Anal. Chem.
70
,
3667
(
1998
).
42.
M. J.
Stevens
,
M. L.
Falk
, and
M. O.
Robbins
,
J. Chem. Phys.
104
,
5209
(
1996
).
43.
A. K.
Mukherjee
,
K. S.
Schmitz
, and
L. B.
Bhuiyan
,
Langmuir
18
,
4210
(
2002
).
44.
K. S.
Schmitz
,
A. K.
Mukherjee
, and
L. B.
Bhuiyan
,
J. Phys. Chem. B
107
,
10040
(
2003
).
45.
J. -P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic
,
Oxford
,
1987
).
46.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
47.
J. M. G.
Barthel
,
H.
Krienke
, and
W.
Kunz
,
Physical Chemistry of Electrolyte Solutions
(
Springer Verlag
,
Darmstadt
,
1996
).
48.
G. N.
Patey
and
J. P.
Valleau
,
Chem. Phys. Lett.
21
,
297
(
1973
).
49.
C.
Vega
and
K. E.
Gubbins
,
Mol. Phys.
75
,
881
(
1992
).
50.
J.
Janeček
and
T.
Boublík
,
Mol. Phys.
104
,
197
(
2006
).
51.
W.
Kunz
,
P.
Calmettes
,
G.
Jannink
,
L.
Belloni
,
P.
Turq
, and
T.
Cartailler
,
J. Chem. Phys.
96
,
7034
(
1992
).
52.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulations of Liquids
(
Clarendon
,
London
,
1990
).
53.
M. E.
Fisher
and
B.
Widom
,
J. Chem. Phys.
50
,
3756
(
1969
).
54.
C.
Vega
,
L. F.
Rull
, and
S.
Lago
,
Phys. Rev. E
51
,
3146
(
1995
).
55.
Y.
Levin
and
M. E.
Fisher
,
Physica A
225
,
164
(
1996
).
56.
D. M.
Zuckerman
,
M. E.
Fisher
, and
B. P.
Lee
,
Phys. Rev. E
56
,
6569
(
1997
).
You do not currently have access to this content.