The negative ion photoelectron spectrum of 1-propynide is computed by employing the multimode vibronic coupling approach. A three-state quasidiabatic Hamiltonian, Hd, is reported, which accurately represents the ab initio determined equilibrium geometries and harmonic frequencies of the ground X̃A21 state as well as the low-lying Jahn–Teller distorted components of the ÃE2 excited state. It also reproduces both the minimum energy crossing point (MECP) on the symmetry-required E2x-E2y conical intersection seam and the MECP on the same symmetry A21-E2x conical intersection seam. Hd includes all terms through second order in internal coordinates for both the diagonal and off-diagonal blocks. It is centered at the E2x-E2y MECP and is determined using ab initio gradients and derivative couplings near both the E2x-E2y MECP and the X̃A21 equilibrium geometry. This construction is enabled by a recently reported normal equation based algorithm. The C3v symmetry of the system is used to significantly reduce the computational cost of the ab initio treatment. This Hd is then expressed in a vibronic basis that is chosen for its ability to reduce the dimension of the vibronic expansion. The vibronic Hamiltonian matrix is diagonalized to obtain a negative ion photoelectron spectrum for 1-propynide-h3. The determined spectrum compares favorably with previous spectroscopic results. In particular, the lines attributable to the E2 state are found to be much weaker than those corresponding to the A21 state of 1-propynyl. This diminution of the E2 state is attributable principally to the E2x-A21 conical intersection rather than an intrinsically small electronic transition moment for the production of the E2 state.

1.
C. H.
Wu
and
R. D.
Kern
,
J. Phys. Chem.
91
,
6291
(
1987
).
2.
J. A.
Miller
and
C. F.
Melius
,
Combust. Flame
91
,
21
(
1992
).
3.
C. L.
Morter
,
S. K.
Farhat
,
J. D.
Adamson
,
G. P.
Glass
, and
R. F.
Curl
,
J. Phys. Chem.
98
,
7029
(
1994
).
4.
N. M.
Marinov
,
W. J.
Pitz
,
C. K.
Westbrook
,
M. J.
Castaldi
, and
S. M.
Senkan
,
Combust. Sci. Technol.
116
,
211
(
1996
).
5.
D. B.
Atkinson
and
J. W.
Hudgens
,
J. Phys. Chem. A
103
,
4242
(
1999
).
6.
H.
Richter
and
J. B.
Howard
,
Prog. Energy Combust. Sci.
26
,
565
(
2000
).
7.
J. A.
Miller
and
S. J.
Klippenstein
,
J. Phys. Chem. A
105
,
7254
(
2001
).
8.
L.
Vereecken
,
J.
Peeters
,
H. F.
Bettinger
,
R. I.
Kaiser
,
P. V.
Schleyer
, and
H. F.
Schaefer
,
J. Am. Chem. Soc.
124
,
2781
(
2002
).
9.
J. A.
Miller
and
S. J.
Klippenstein
,
J. Phys. Chem. A
107
,
7783
(
2003
).
10.
R. X.
Fernandes
,
H.
Hippler
, and
M.
Olzmann
,
Proc. Combust. Inst.
30
,
1033
(
2005
).
11.
I.
Cherchneff
,
J. R.
Barker
, and
A.
Tielens
,
Astrophys. J.
401
,
269
(
1992
).
12.
J. I.
Moses
,
B.
Bezard
,
E.
Lellouch
,
G. R.
Gladstone
,
H.
Feuchtgruber
, and
M.
Allen
,
Icarus
143
,
244
(
2000
).
13.
R. I.
Kaiser
and
A. M.
Mebel
,
Int. Rev. Phys. Chem.
21
,
307
(
2002
).
14.
E. H.
Wilson
,
S. K.
Atreya
, and
A.
Coustenis
,
J. Geophys. Res.
108
,
5014
, DOI: 10.1029/2002JE001896 (
2003
).
15.
J. I.
Moses
,
T.
Fouchet
,
B.
Bezard
,
G. R.
Gladstone
,
E.
Lellouch
, and
H.
Feuchtgruber
,
J. Geophys. Res., [Planets]
110
,
E08001
(
2005
).
16.
J. M.
Oakes
and
G. B.
Ellison
,
J. Am. Chem. Soc.
105
,
2969
(
1983
).
17.
M. S.
Robinson
,
M. L.
Polak
,
V. M.
Bierbaum
,
C. H.
DePuy
, and
W. C.
Lineberger
,
J. Am. Chem. Soc.
117
,
6766
(
1995
).
18.
R. I.
Kaiser
,
Y. T.
Lee
, and
A. G.
Suits
,
J. Chem. Phys.
105
,
8705
(
1996
).
19.
M.
Wyss
,
E.
Riaplov
, and
J. P.
Maier
,
J. Chem. Phys.
114
,
10355
(
2001
).
20.
S. E.
Wheeler
,
K. A.
Robertson
,
W. D.
Allen
,
H. F.
Schaefer
 III
,
Y. J.
Bomble
, and
J. F.
Stanton
,
J. Phys. Chem. A
111
,
3819
(
2007
).
21.
D. M.
Chipman
and
K. E.
Miller
,
J. Am. Chem. Soc.
106
,
6236
(
1984
).
22.
G. J.
Collin
,
H.
Deslauriers
,
G. R. D.
Maré
, and
R. A.
Poirier
,
J. Phys. Chem.
94
,
134
(
1990
).
23.
C. W.
Bauschlicher
and
S. R.
Langhoff
,
Chem. Phys. Lett.
193
,
380
(
1992
).
24.
L.
Vereecken
,
K.
Pierloot
, and
J.
Peeters
,
J. Chem. Phys.
108
,
1068
(
1998
).
25.
A. M.
Mebel
,
W. M.
Jackson
,
A. H. H.
Chang
, and
S. H.
Lin
,
J. Am. Chem. Soc.
120
,
5751
(
1998
).
26.
W.
Eisfeld
,
Phys. Chem. Chem. Phys.
7
,
3924
(
2005
).
27.
J.
Zhou
,
E.
Garand
,
W.
Eisfeld
, and
D. M.
Neumark
,
J. Chem. Phys.
127
,
034304
(
2007
).
28.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
29.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
, in
Conical Intersections
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
NJ
,
2004
), Vol.
15
, p.
323
.
30.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
127
,
094104
(
2007
).
31.
B. N.
Papas
,
M. S.
Schuurman
, and
D. R.
Yarkony
,
J. Chem. Phys.
129
,
124104
(
2008
).
32.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
128
,
044119
(
2008
).
33.
M. S.
Schuurman
and
D. R.
Yarkony
,
Chem. Phys.
347
,
57
(
2008
).
34.
R. L.
Branham
,
Scientific Data Analysis: An Introduction to Overdetermined Systems
(
Springer
,
Berlin
,
1990
).
35.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
, 3rd ed. (
The Johns Hopkins University Press
,
Baltimore
,
1996
).
36.
T. E.
Sharp
and
H. M.
Rosenstock
,
J. Chem. Phys.
41
,
3453
(
1964
).
37.
H.
Kupka
and
P. H.
Cribb
,
J. Chem. Phys.
85
,
1303
(
1986
).
38.
E. V.
Doktorov
,
I. A.
Malkin
, and
V. I.
Man’ko
,
J. Mol. Spectrosc.
56
,
1
(
1975
).
39.
E. V.
Doktorov
,
I. A.
Malkin
, and
V. I.
Man’ko
,
J. Mol. Spectrosc.
64
,
302
(
1977
).
40.
A.
Warshel
(unpublished).
41.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
42.
B. H.
Lengsfield
and
D. R.
Yarkony
, in
State-Selected and State to State Ion-Molecule Reaction Dynamics: Part 2 Theory
, edited by
M.
Baer
and
C. -Y.
Ng
(
Wiley
,
New York
,
1992
), Vol.
82
, p.
1
.
43.
H.
Lischka
,
M.
Dallos
,
P.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
,
J. Chem. Phys.
120
,
7322
(
2004
).
44.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
 et al, COLUMBUS, an ab initio electronic structure program,
2003
.
45.
D. R.
Yarkony
,
J. Chem. Phys.
114
,
2601
(
2001
).
46.
A. J.
Gianola
,
T.
Ichino
,
R. L.
Hoenigman
,
S.
Kato
,
V. M.
Bierbaum
, and
W. C.
Lineberger
,
J. Phys. Chem. A
108
,
10326
(
2004
).
47.
A.
Motzke
,
Z.
Lan
,
C.
Woywod
, and
W.
Domcke
,
Chem. Phys.
329
,
50
(
2006
).
48.
A.
Weaver
,
D. W.
Arnold
,
S. E.
Bradforth
, and
D. M.
Neumark
,
J. Chem. Phys.
94
,
1740
(
1991
).
49.
C.
Lanczos
,
J. Res. Natl. Bur. Stand.
49
,
33
(
1952
).
50.
H.
Simon
,
Math. Comput.
42
,
115
(
1984
).
51.
J.
Zhou
, personal communication (2007).
52.
E. P.
Wigner
,
Phys. Rev.
73
,
1002
(
1948
).
53.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
54.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
McMillan
,
New York
,
1982
).
55.
J. F.
Stanton
,
J. Chem. Phys.
126
,
134309
(
2007
).
56.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
129
,
064304
(
2008
).
57.
G. J.
Atchity
,
S. S.
Xantheas
, and
K.
Ruedenberg
,
J. Chem. Phys.
95
,
1862
(
1991
).
58.
D. R.
Yarkony
,
Acc. Chem. Res.
31
,
511
(
1998
).
59.
See EPAPS Document No. E-JCPSA6-130-029905 for supplementary tables. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
60.
A.
Viel
and
W.
Eisfeld
,
J. Chem. Phys.
120
,
4603
(
2004
).
61.
W.
Eisfeld
and
A.
Viel
,
J. Chem. Phys.
122
,
204317
(
2005
).

Supplementary Material

You do not currently have access to this content.