We present an approach for the direct calculation of vibrational normal modes with high infrared intensities based on a mode-tracking-like algorithm [M. Reiher and J. Neugebauer, J. Chem. Phys.118, 1634 (2003)] but with distinct features: no collective guess vibration is utilized but high-intensity distortions are constructed. Only the modes of interest with the highest infrared intensities are then targeted irrespective of a predefinition of the underlying collective normal coordinates. This leads to a fast access to the most important features in infrared spectra. The different implementations of the mode selection procedure are validated on a set of small organic molecules as well as on the metal complex Δ(δδδ)-tris(ethylenediaminato)cobalt(III) and the peptide all-(S)-decaalanine. As a critical test case, approximate infrared spectra of Schrock’s dinitrogen molybdenum complex are calculated via intensity tracking.

1.
G.
Herzberg
,
Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules
(
Van Nostrand Reinhold
,
New York
,
1945
).
2.
K.
Nakamoto
,
Infrared and Raman Spectra of Inorganic and Coordination Compounds
, 6th ed. (
Wiley
,
New York
,
2007
).
3.
C.
Herrmann
and
M.
Reiher
,
Top. Curr. Chem.
268
,
85
(
2007
).
4.
E. B.
Wilson
, Jr.
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations
(
McGraw-Hill
,
New York
,
1955
).
5.
J.
Neugebauer
,
M.
Reiher
,
C.
Kind
, and
B. A.
Hess
,
J. Comput. Chem.
23
,
895
(
2002
).
6.
M.
Reiher
and
J.
Neugebauer
,
J. Chem. Phys.
118
,
1634
(
2003
).
7.
M.
Reiher
and
J.
Neugebauer
,
Phys. Chem. Chem. Phys.
6
,
4621
(
2004
).
8.
C.
Herrmann
,
J.
Neugebauer
, and
M.
Reiher
,
New J. Chem.
31
,
818
(
2007
).
9.
C.
Herrmann
,
K.
Ruud
, and
M.
Reiher
,
ChemPhysChem
7
,
2189
(
2006
).
10.
J.
Neugebauer
and
M.
Reiher
,
J. Phys. Chem. A
108
,
2053
(
2004
).
11.
J.
Neugebauer
and
M.
Reiher
,
J. Comput. Chem.
25
,
587
(
2004
).
12.
C.
Herrmann
and
M.
Reiher
,
Surf. Sci.
600
,
1891
(
2006
).
13.
T. B.
Adler
,
N.
Borho
,
M.
Reiher
, and
M. A.
Suhm
,
Angew. Chem., Int. Ed.
45
,
3440
(
2006
).
14.
C.
Herrmann
,
J.
Neugebauer
, and
M.
Reiher
,
J. Comput. Chem.
29
,
2460
(
2008
).
15.
A. L.
Kaledin
,
J. Chem. Phys.
122
,
184106
(
2005
).
16.
M.
Reiher
and
J.
Neugebauer
,
J. Chem. Phys.
123
,
117101
(
2005
).
17.
A. L.
Kaledin
,
M.
Kaledin
, and
J. M.
Bowman
,
J. Chem. Theory Comput.
2
,
166
(
2006
).
18.
K.
Kiewisch
,
J.
Neugebauer
, and
M.
Reiher
,
J. Chem. Phys.
129
,
204103
(
2008
).
19.
D. V.
Yandulov
and
R. R.
Schrock
,
J. Am. Chem. Soc.
124
,
6252
(
2002
).
20.
D. V.
Yandulov
and
R. R.
Schrock
,
Science
301
,
76
(
2003
).
21.
R. R.
Schrock
,
Acc. Chem. Res.
38
,
955
(
2005
).
22.
W. W.
Weare
,
X.
Dai
,
M. J.
Byrnes
,
J. M.
Chin
,
R. R.
Schrock
, and
P.
Müller
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
17099
(
2006
).
23.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
24.
H.
Torii
,
Y.
Ueno
,
A.
Sakamoto
, and
M.
Tasumi
,
J. Phys. Chem. A
103
,
5557
(
1999
).
25.
S.
Laimgruber
,
T.
Schmierer
,
P.
Gilch
,
K.
Kiewisch
, and
J.
Neugebauer
,
Phys. Chem. Chem. Phys.
10
,
3872
(
2008
).
26.
A.
Komornicki
and
J. J. W.
McIver
,
J. Chem. Phys.
70
,
2014
(
1979
).
27.
A.
Komornicki
and
R. L.
Jaffe
,
J. Chem. Phys.
71
,
2150
(
1979
).
28.
W. G.
Bickley
,
Math. Gaz.
25
,
19
(
1941
).
29.
C.
Herrmann
,
J.
Neugebauer
, and
M.
Reiher
,
ETH Zürich
(unpublished).
30.
M.
Reiher
,
V.
Liégeois
, and
K.
Ruud
,
J. Phys. Chem. A
109
,
7567
(
2005
).
31.
S.
Luber
,
C.
Herrmann
, and
M.
Reiher
,
J. Phys. Chem. B
112
,
2218
(
2008
).
32.
S.
Luber
and
M.
Reiher
,
Chem. Phys.
346
,
212
(
2008
).
33.
B.
Le Guennic
,
B.
Kirchner
, and
M.
Reiher
,
Chem.-Eur. J.
11
,
7448
(
2005
).
34.
M.
Reiher
,
B.
Le Guennic
, and
B.
Kirchner
,
Inorg. Chem.
44
,
9640
(
2005
).
35.
S.
Schenk
,
B.
Le Guennic
,
B.
Kirchner
, and
M.
Reiher
,
Inorg. Chem.
47
,
3634
(
2008
).
36.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
37.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
38.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
39.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
40.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
42.
G. B.
Bacskay
,
S.
Saebø
, and
P. R.
Taylor
,
Chem. Phys.
90
,
215
(
1984
).
43.
D. R.
Fredkin
,
A.
Komornicki
,
S. R.
White
, and
K. R.
Wilson
,
J. Chem. Phys.
78
,
7077
(
1983
).
44.
J.
Autschbach
,
L.
Jensen
,
G. C.
Schatz
,
Y. C. E.
Tse
, and
M.
Krykunov
,
J. Phys. Chem. A
110
,
2461
(
2006
).
45.
J.
Autschbach
,
F. E.
Jorge
, and
T.
Ziegler
,
Inorg. Chem.
42
,
2867
(
2003
).
46.
T. B.
Freedman
,
X.
Cao
,
D. A.
Young
, and
L. A.
Nafie
,
J. Phys. Chem. A
106
,
3560
(
2002
).
47.
F. E.
Jorge
,
J.
Autschbach
, and
T.
Ziegler
,
Inorg. Chem.
42
,
8902
(
2003
).
48.
F. E.
Jorge
,
J.
Autschbach
, and
T.
Ziegler
,
J. Am. Chem. Soc.
127
,
975
(
2005
).
49.
S.
Schenk
,
B.
Kirchner
, and
M.
Reiher
,
Chem.-Eur. J.
(unpublished).
You do not currently have access to this content.