The density functional based tight binding (DFTB) is a semiempirical method derived from the density functional theory (DFT). It inherits therefore its problems in treating van der Waals clusters. A major error comes from dispersion forces, which are poorly described by commonly used DFT functionals, but which can be accounted for by an a posteriori treatment DFT-D. This correction is used for DFTB. The self-consistent charge (SCC) DFTB is built on Mulliken charges which are known to give a poor representation of Coulombic intermolecular potential. We propose to calculate this potential using the class IV/charge model 3 definition of atomic charges. The self-consistent calculation of these charges is introduced in the SCC procedure and corresponding nuclear forces are derived. Benzene dimer is then studied as a benchmark system with this corrected DFTB (c-DFTB-D) method, but also, for comparison, with the DFT-D. Both methods give similar results and are in agreement with references calculations (CCSD(T) and symmetry adapted perturbation theory) calculations. As a first application, pyrene dimer is studied with the c-DFTB-D and DFT-D methods. For coronene clusters, only the c-DFTB-D approach is used, which finds the sandwich configurations to be more stable than the T-shaped ones.

1.
B.
Jeziorski
,
R.
Moszynski
, and
K.
Szalewicz
,
Chem. Rev. (Washington, D.C.)
94
,
1887
(
1994
).
2.
M.
Strain
,
G.
Scuseria
, and
M.
Frisch
,
Science
271
,
51
(
1996
).
3.
T. J.
Lee
and
G. E.
Scuseria
, in
Quantum Mechanical Electronic Structure calculations with Chemical Accuracy
(
Kluwer Academic
,
Dordrecht
,
1995
), p.
47
.
4.
J. G.
Hill
,
J.
Platts
, and
H.-J.
Werner
,
Phys. Chem. Chem. Phys.
8
,
4072
(
2006
).
5.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
3
,
289
(
2007
).
6.
M.
Dion
,
H.
Rydberg
,
E.
Schörder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
7.
T.
Sato
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
123
,
104307
(
2005
).
8.
D. C.
Langreth
,
M.
Dion
,
H.
Rydberg
,
E.
Shroder
,
P.
Hyldgaard
, and
B. I.
Lundqvist
,
Int. J. Quantum Chem.
101
,
599
(
2005
).
9.
S. D.
Chakarova-Kack
,
E.
Schroder
,
B. I.
Lundqvist
, and
D. C.
Langreth
,
Phys. Rev. Lett.
96
,
146107
(
2006
).
10.
A.
Puzder
,
M.
Dion
, and
D. C.
Langreth
,
J. Chem. Phys.
124
,
164105
(
2006
).
11.
T.
Thonhauser
,
V. R.
Cooper
,
S.
Li
,
A.
Puzder
,
P.
Hyldgaard
, and
D. C.
Langreth
,
Phys. Rev. B
76
,
125112
(
2007
).
12.
O. A.
von Lilienfeld
,
I.
Tavernelli
,
U.
Rothlisberger
, and
D.
Sebastiani
,
Phys. Rev. Lett.
93
,
153004
(
2004
).
13.
V. R.
Cooper
,
T.
Thonhauser
, and
D. C.
Langreth
,
J. Chem. Phys.
128
,
204102
(
2008
).
14.
S.
Li
,
V. R.
Cooper
,
T.
Thonhauser
,
A.
Puzder
, and
D. C.
Langreth
,
J. Phys. Chem. A
112
,
9031
(
2008
).
15.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
108
,
6908
(
2004
).
16.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
,
J. Chem. Phys.
123
,
161103
(
2005
).
17.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
2
,
364
(
2006
).
18.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Phys.
125
,
194101
(
2006
).
19.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
110
,
5121
(
2006
).
20.
Y.
Zhao
and
D. G.
Truhlar
,
Acc. Chem. Res.
41
,
157
(
2008
).
21.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. C
112
,
4061
(
2008
).
22.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
23.
Y.
Zhao
and
D. G.
Truhlar
,
Phys. Chem. Chem. Phys.
10
,
2813
(
2008
).
24.
A. D.
Boese
and
N. C.
Handy
,
J. Chem. Phys.
116
,
9559
(
2002
).
25.
E.
Fromager
and
H. J. A.
Jensen
,
Phys. Rev. A
78
,
022504
(
2008
).
26.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
27.
J. P.
Lewis
and
O. F.
Sankey
,
Biophys. J.
69
,
1068
(
1995
).
28.
E. J.
Meijer
and
M.
Sprik
,
J. Chem. Phys.
105
,
8684
(
1996
).
29.
F. A.
Gianturco
,
F.
Paesani
,
M. F.
Laranjeira
,
V.
Vassilenko
, and
M. A.
Cunha
,
J. Chem. Phys.
110
,
7832
(
1999
).
30.
M.
Elstner
,
P.
Hobza
,
T.
Frauenheim
,
S.
Suhai
, and
E.
Kaxiras
,
J. Chem. Phys.
114
,
5149
(
2001
).
31.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
116
,
515
(
2002
).
32.
U.
Zimmerli
,
M.
Parrinello
, and
P.
Koumoutsakos
,
J. Chem. Phys.
120
,
2693
(
2004
).
33.
S.
Grimme
,
J. Comput. Chem.
25
,
1463
(
2004
).
34.
A.
Goursot
,
T.
Mineva
,
R.
Kevorkyants
, and
D.
Talbi
,
J. Chem. Theory Comput.
3
,
755
(
2007
).
35.
F.
Calvo
,
F.
Spiegelman
, and
L.
Montagnon
,
Atomic Modelling of Clusters and Nanoparticles
,
Encyclopedia of Nanosciences and Technology
(
American Scientific
,
Valencia, CA
, in press).
36.
F.
Momany
,
R.
McGuire
,
A.
Burgess
, and
H.
Scheraga
,
J. Phys. Chem.
79
,
2361
(
1975
).
37.
B.
Brooks
,
R.
Bruccoleri
,
B.
Olafson
,
D.
States
,
S.
Swaminathan
, and
M.
Karplus
,
J. Comput. Chem.
4
,
187
(
1983
).
38.
S.
Weiner
,
P.
Kollman
,
D.
Case
,
U.
Singh
,
C.
Ghio
,
G.
Alagona
,
S.
Profeta
, and
P.
Weiner
,
J. Am. Chem. Soc.
106
,
765
(
1984
).
39.
W.
Van Gunsteren
and
H.
Berendser
,
Angew. Chem. Int. Ed.
29
,
992
(
1990
).
40.
W. L.
Jorgensen
,
J. Phys. Chem.
90
,
1276
(
1986
).
41.
42.
D.
Brenner
,
O.
Shenderova
,
J.
Harrison
,
S.
Stuart
,
B.
Ni
, and
S.
Sinnott
,
J. Phys.: Condens. Matter
14
,
783
(
2002
).
43.
A.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W.
Goddard
,
J. Phys. Chem. A
105
,
9396
(
2001
).
44.
J.
Los
and
A.
Fasolino
,
Phys. Rev. B
68
,
024107
(
2003
).
45.
D.
Porezag
,
T.
Frauenheim
,
T.
Köhler
,
G.
Seifert
, and
R.
Kaschner
,
Phys. Rev. B
51
,
12947
(
1995
).
46.
G.
Seifert
,
D.
Porezag
, and
T.
Frauenheim
,
Int. J. Quantum Chem.
58
,
185
(
1996
).
47.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev. B
58
,
7260
(
1998
).
48.
L.
Zhechkov
,
T.
Heine
,
S.
Patchovskii
,
G.
Seifert
, and
H.
Duarte
,
J. Chem. Theory Comput.
1
,
841
(
2005
).
49.
M.
Elstner
,
Theor. Chem. Acc.
116
,
316
(
2006
).
50.
J.
Li
,
T.
Zhu
,
C.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. A
102
,
1820
(
1998
).
51.
P.
Winget
,
J. D.
Thompson
,
J. D.
Xidos
,
C. J.
Kramer
, and
D. G.
Truhlar
,
J. Phys. Chem. A
106
,
10707
(
2002
).
52.
J.
Thompson
,
C.
Cramer
, and
J.
Truhlar
,
Comput. Chem.
24
,
1291
(
2003
).
53.
J.
Kalinowski
,
B.
Lesyng
,
J.
Thompson
,
C.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. A
108
,
2545
(
2004
).
54.
C. P.
Kelly
,
C. J.
Cramer
,
D. G.
Truhlar
,
Theor. Chem. Acc.
113
,
133
(
2005
).
55.
M.
Rapacioli
,
C.
Joblin
, and
P.
Boissel
,
Astron. Astrophys.
429
,
193
(
2005
).
56.
O.
Berné
,
C.
Joblin
,
Y.
Deville
,
J. D.
Smith
,
M.
Rapacioli
,
J. P.
Bernard
,
J.
Thomas
,
W.
Reach
, and
A.
Abergel
,
Astron. Astrophys.
469
,
575
(
2007
).
57.
M.
Rapacioli
,
F.
Calvo
,
C.
Joblin
,
P.
Parneix
,
D.
Toublanc
, and
F.
Speigelman
,
Astron. Astrophys.
460
,
519
(
2006
).
58.
M.
Schmidt
,
A.
Masson
, and
C.
Bréchignac
,
Int. J. Mass Spectrom.
252
,
173
(
2006
).
59.
C.
Joblin
,
C.
Pech
,
M.
Armengaud
,
P.
Frabel
, and
P.
Boissel
,
A Piece of Interstellar Medium in the Laboratory: The PIRENEA Experiment
,
EAS Publications Series
Vol.
4
(
Versoix
,
Switzerland
,
2002
).
60.
P.
Hobza
,
H. L.
Selzle
, and
E. W.
Schlag
,
J. Phys. Chem.
100
,
18790
(
1996
).
61.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
,
M.
Mikami
, and
K.
Tanabe
,
J. Am. Chem. Soc.
124
,
104
(
2002
).
62.
M. O.
Sinnokrot
,
E. F.
Valeev
, and
C. D.
Sherrill
,
J. Am. Chem. Soc.
124
,
10887
(
2002
).
63.
M. O.
Sinnokrot
and
C. D.
Sherrill
,
J. Phys. Chem. A
108
,
10200
(
2004
).
64.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
, and
M.
Mikami
,
J. Chem. Phys.
120
,
647
(
2004
).
65.
E. C.
Lee
,
D.
Kim
,
P.
Jurecka
,
P.
Tarakeshwar
,
P.
Hobza
, and
K. S.
Kim
,
J. Phys. Chem. A
111
,
3446
(
2007
).
66.
R.
Podeszwa
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Phys. Chem. A
110
,
10345
(
2006
).
67.
B. W.
van de Waal
,
Chem. Phys. Lett.
123
,
69
(
1986
).
68.
D.
Williams
,
Chem. Phys. Lett.
192
,
538
(
1992
).
69.
Z. -Q.
Li
,
K.
Ohno
,
Y.
Kawazoe
,
M.
Mikami
, and
T.
Masuda
,
Comput. Mater. Sci.
4
,
241
(
1995
).
70.
O.
Engkvist
,
P.
Hobza
,
H. L.
Selzle
 et al,
J. Chem. Phys.
110
,
5758
(
1999
).
71.
V.
Spirko
,
O.
Engkvist
,
P.
Soldan
,
H. L.
Selzle
,
E. W.
Schlag
, and
P.
Hobza
,
J. Chem. Phys.
111
,
572
(
1999
).
72.
C.
Gonzalez
and
E. C.
Lim
,
J. Phys. Chem. A
104
,
2953
(
2000
).
73.
C.
Gonzalez
and
E.
Lim
,
J. Chem. Phys. A
105
,
1904
(
2001
).
74.
F.
Tran
,
J.
Weber
, and
T. A.
Wesolowski
,
Helv. Chim. Acta
84
,
1489
(
2001
).
75.
X.
Wu
,
M. C.
Vargas
,
S.
Nayak
,
V.
Lotrich
, and
G.
Scoles
,
J. Chem. Phys.
115
,
8748
(
2001
).
77.
D. C.
Easter
,
J. Phys. Chem. A
107
,
7733
(
2003
).
78.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
123
,
154101
(
2005
).
79.
N. K.
Lee
and
S. K.
Kim
,
J. Chem. Phys.
122
,
031102
(
2005
).
80.
O. A.
von Lilienfeld
and
D.
Andrienko
,
J. Chem. Phys.
124
,
054307
(
2006
).
81.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
82.
T.
Sato
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
126
,
234114
(
2007
).
83.
E. R.
Johnson
and
A. D.
Becke
,
J. Chem. Phys.
124
,
174104
(
2006
).
84.
M. P.
Waller
,
A.
Robertazzi
,
J.
Platts
,
D.
Hibbs
, and
P.
Williams
,
J. Comput. Chem.
27
,
491
(
2006
).
85.
R. A.
DiStasio
, Jr.
,
G.
von Helden
,
R. P.
Steele
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
437
,
277
(
2007
).
86.
M.
Pavone
,
N.
Rega
, and
V.
Barone
,
Chem. Phys. Lett.
452
,
333
(
2008
).
87.
P. C.
Jha
,
Z.
Rinkevicius
,
H.
Agren
,
P.
Seal
, and
S.
Chakrabarti
,
Phys. Chem. Chem. Phys.
10
,
2715
(
2008
).
88.
D. C.
Langreth
,
B. I.
Lundqvist
,
S. D.
Chakarova-Käck
,
V. R.
Cooper
,
M.
Dion
,
P.
Hyldgaard
,
A.
Kelkkanen
,
J.
Kleis
,
L.
Kong
,
S.
Li
,
P. G.
Moses
,
E.
Murray
,
A.
Puzder
,
H.
Rydberg
,
E.
Schröder
, and
T.
Thonhauser
,
J. Phys.: Condens. Matter
21
,
084203
(
2009
).
89.
C.
Gonzalez
and
E. C.
Lim
,
J. Phys. Chem. A
107
,
10105
(
2003
).
90.
S. D.
Chakarova
and
E.
Schroder
,
J. Chem. Phys.
122
,
054102
(
2005
).
91.
R.
Podeszwa
and
K.
Szalewicz
,
Phys. Chem. Chem. Phys.
10
,
2735
(
2008
).
92.
J. S.-M.
Rubio
and
E.
Ortí
,
Int. J. Quantum Chem.
57
,
567
(
1996
).
93.
W. W.
Duley
and
S.
Seahra
,
Astrophys. J.
507
,
874
(
1998
).
94.
H.
Ruuska
and
T. A.
Pakkanen
,
J. Phys. Chem. B
105
,
9541
(
2001
).
95.
M.
Rapacioli
,
F.
Calvo
,
F.
Spiegelman
,
C.
Joblin
, and
D.
Wales
,
J. Phys. Chem. A
109
,
2487
(
2005
).
96.
O.
Obolensky
,
V.
Semenikhina
,
A.
Solovyov
, and
W.
Greiner
,
Int. J. Quantum Chem.
107
,
1335
(
2007
).
97.
M.
Rapacioli
,
F.
Calvo
,
C.
Joblin
,
P.
Parneix
, and
F.
Spiegelman
,
J. Phys. Chem. A
111
,
2999
(
2007
).
98.
S.
Grimme
,
C.
Muck-Lichtenfeld
, and
J.
Antony
,
J. Phys. Chem. C
111
,
11199
(
2007
).
99.
T.
Heine
,
H. F.
Dos Santos
,
S.
Patchkovskii
, and
H. A.
Duarte
,
J. Phys. Chem. A
111
,
5648
(
2007
).
100.
A. K.
Rappe
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
, and
W. M.
Skiff
,
J. Am. Chem. Soc.
114
,
10024
(
1992
).
101.
C. I.
Bayly
,
P.
Cieplak
,
W.
Cornell
, and
P. A.
Kollman
,
J. Phys. Chem.
97
,
10269
(
1993
).
102.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev. (Washington, D.C.)
88
,
899
(
1988
).
103.
R. F.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Oxford University Press
,
New York
,
1990
).
104.
G. d. M.
Seabra
,
R. C.
Walker
,
M.
Elstner
,
D. A.
Case
, and
A. E.
Roitberg
,
J. Phys. Chem. A
,
111
,
5655
(
2007
).
105.
106.
Y.
Zhang
and
W.
Yang
,
Phys. Rev. Lett.
80
,
890
(
1998
).
107.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
108.
P.
Calaminici
,
F.
Janetzko
,
A. M.
Koster
,
R.
Mejia-Olvera
, and
B.
Zuniga-Gutierrez
,
J. Chem. Phys.
126
,
044108
(
2007
).
109.
A.
Köster
,
P.
Calaminici
,
R.
Flores-Moreno
,
G.
Geudtner
,
A.
Goursot
,
T.
Heine
,
A.
Ipatov
,
F.
Janetzko
,
J.
Del Campo
,
S.
Patchkovskii
,
J.
Reveles
,
A.
Vela
, and
D.
Salahub
, DEMON2K program.
110.
S.
Boys
and
F.
Bernardi
,
Mol. Phys.
100
,
65
(
2002
).
111.
D.
Talbi
,
T.
Mineva
,
A.
Goursot
,
M.
Rapacioli
, and
F.
Spiegelman
(unpublished).
112.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
, and
M.
Mikami
,
J. Chem. Phys.
124
,
114304
(
2006
).
113.
F.
Piuzzi
,
I.
Dimicoli
,
M.
Mons
,
P.
Millié
,
V.
Brenner
,
Q.
Zhao
,
B.
Soep
, and
A.
Tramer
,
Chem. Phys.
275
,
123
(
2002
).
114.
M.
Neumann
,
F. J. J.
Leusen
, and
J.
Kendrick
,
Angew. Chem.
47
,
2427
(
2008
).
115.
C. P.
Kelly
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
1
,
1133
(
2005
).
116.
M.
Rapacioli
and
F.
Spiegelman
,
Eur. Phys. J. D
52
,
55
(
2009
).
You do not currently have access to this content.