In recent years, powerful and accurate methods, based on a Wang–Landau sampling, have been developed to determine phase equilibria. However, while these methods have been extensively applied to study the phase behavior of model fluids, they have yet to be applied to molecular systems. In this work, we show how, by combining hybrid Monte Carlo simulations in the isothermal-isobaric ensemble with the Wang–Landau sampling method, we determine the vapor-liquid equilibria of various molecular fluids. More specifically, we present results obtained on rigid molecules, such as benzene, as well as on flexible chains of n-alkanes. The reliability of the method introduced in this work is assessed by demonstrating that our results are in excellent agreement with the results obtained in previous work on simple fluids, using either transition matrix or conventional Monte Carlo simulations with a Wang–Landau sampling, and on molecular fluids, using histogram reweighting or Gibbs ensemble Monte Carlo simulations.

1.
A. Z.
Panagiotopoulos
,
Mol. Phys.
61
,
813
(
1987
).
2.
A. Z.
Panagiotopoulos
,
J. Phys.: Condens. Matter
12
,
R25
(
2000
).
3.
B.
Smit
,
S.
Karaborni
, and
J. I.
Siepmann
,
J. Chem. Phys.
102
,
2126
(
1995
).
4.
J.
Siepmann
and
D.
Frenkel
,
Mol. Phys.
75
,
59
(
1992
).
5.
T.
Kristof
and
J.
Liszi
,
J. Phys. Chem. B
101
,
5480
(
1997
).
6.
J.
Delhommelle
,
A.
Boutin
, and
A. H.
Fuchs
,
Mol. Simul.
22
,
351
(
1999
).
7.
J.
Delhommelle
,
P.
Millie
, and
A. H.
Fuchs
,
Mol. Phys.
98
,
1895
(
2000
).
8.
G.
Kamath
,
N.
Lubna
, and
J. J.
Potoff
,
J. Chem. Phys.
123
,
124505
(
2005
).
9.
S. T.
Cui
,
P. T.
Cummings
, and
H. D.
Cochran
,
Fluid Phase Equilib.
141
,
45
(
1997
).
10.
N. D.
Zhuravlev
and
J. I.
Siepmann
,
Fluid Phase Equilib.
134
,
55
(
1997
).
11.
B.
Neubauer
,
J.
Delhommelle
,
A.
Boutin
,
B.
Tavitian
, and
A. H.
Fuchs
,
Fluid Phase Equilib.
155
,
167
(
1999
).
12.
N. D.
Zhuravlev
,
M. G.
Martin
, and
J. I.
Siepmann
,
Fluid Phase Equilib.
202
,
307
(
2002
).
13.
D.
Bhatt
,
A. W.
Jasper
,
N. E.
Schultz
,
J. I.
Siepmann
, and
D. G.
Truhlar
,
J. Am. Chem. Soc.
128
,
4224
(
2006
).
14.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
111
,
9731
(
1999
).
15.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Phys. Chem. B
103
,
6314
(
1999
).
16.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
61
,
2635
(
1988
).
17.
S. K.
Nath
,
F. A.
Escobedo
, and
J. J.
de Pablo
,
J. Chem. Phys.
108
,
9905
(
1998
).
18.
M. G.
Martin
and
J. I.
Siepmann
,
J. Phys. Chem. B
102
,
2569
(
1998
).
19.
J.
Delhommelle
,
C.
Tschirwitz
,
G.
Granucci
,
P.
Millie
,
D.
Pattou
, and
A. H.
Fuchs
,
J. Phys. Chem. B
104
,
4745
(
2000
).
20.
N.
Rai
and
J. I.
Siepmann
,
J. Phys. Chem. B
111
,
10790
(
2007
).
21.
J. M.
Stubbs
,
J. J.
Potoff
, and
J. I.
Siepmann
,
J. Phys. Chem. B
108
,
17596
(
2004
).
22.
B.
Chen
,
J. J.
Potoff
, and
J. I.
Siepmann
,
J. Phys. Chem. B
105
,
3093
(
2001
).
23.
B. A.
Berg
and
T.
Neuhaus
,
Phys. Rev. Lett.
68
,
9
(
1992
).
24.
F. G.
Wang
and
D. P.
Landau
,
Phys. Rev. E
64
,
056101
(
2001
).
25.
F. G.
Wang
and
D. P.
Landau
,
Phys. Rev. Lett.
86
,
2050
(
2001
).
26.
C. R. A.
Abreu
and
F. A.
Escobedo
,
J. Chem. Phys.
124
,
054116
(
2006
).
27.
J. R.
Errington
,
J. Chem. Phys.
118
,
9915
(
2003
).
28.
G.
Gazenmuller
and
P. J.
Camp
,
J. Chem. Phys.
127
,
154504
(
2007
).
29.
Q.
Yan
,
R.
Faller
, and
J. J.
de Pablo
,
J. Chem. Phys.
116
,
8745
(
2002
).
30.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. E
66
,
056703
(
2002
).
31.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
119
,
9406
(
2003
).
32.
F. A.
Escobedo
and
C. R. A.
Abreu
,
J. Chem. Phys.
124
,
104110
(
2006
).
33.
I. D.
Gospodinov
and
F. A.
Escobedo
,
J. Chem. Phys.
122
,
164103
(
2005
).
34.
N. A.
Wilding
,
Am. J. Phys.
69
,
1147
(
2001
).
36.
S.
Duane
,
A. D.
Kennedy
,
B. J.
Pendleton
, and
D.
Roweth
,
Phys. Lett. B
195
,
216
(
1987
).
37.
B.
Mehlig
,
D. W.
Heerman
, and
B. M.
Forrest
,
Phys. Rev. B
45
,
679
(
1992
).
38.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
39.
J.
Delhommelle
,
A.
Boutin
,
B. A.
Tavitian
,
A. D.
Mackie
, and
A. H.
Fuchs
,
Mol. Phys.
96
,
1517
(
1999
).
40.
P.
Ungerer
,
C.
Beauvais
,
J.
Delhommelle
,
A.
Boutin
,
B.
Rousseau
, and
A. H.
Fuchs
,
J. Chem. Phys.
112
,
5499
(
2000
).
41.
G. C.
Maitland
,
M.
Rigby
,
E. B.
Smith
, and
W. A.
Wakeham
,
Intermolecular Forces
(
Clarendon
,
Oxford
,
1981
).
42.
J.
Delhommelle
and
P.
Millie
,
Mol. Phys.
99
,
619
(
2001
).
43.
R.
Khare
,
J. J.
de Pablo
, and
A.
Yethiraj
,
J. Chem. Phys.
107
,
6956
(
1997
).
44.
S. H.
Pine
,
Organic Chemistry
, 2nd ed. (
McGraw-Hill
,
New York
,
1964
).
45.
P.
Padilla
and
S.
Toxvaerd
,
J. Chem. Phys.
94
,
5650
(
1991
).
46.
W. L.
Jorgensen
,
J. D.
Madura
, and
C. J.
Swenson
,
J. Am. Chem. Soc.
106
,
6638
(
1984
).
47.
C.
Desgranges
and
J.
Delhommelle
,
J. Am. Chem. Soc.
129
,
7012
(
2007
).
48.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
127
,
144509
(
2007
).
49.
C.
Desgranges
and
J.
Delhommelle
,
J. Phys. Chem. B
111
,
12257
(
2007
).
50.
C.
Desgranges
and
J.
Delhommelle
,
Phys. Rev. B
77
,
054201
(
2008
).
51.
C.
Desgranges
and
J.
Delhommelle
,
J. Phys. Chem. C
113
,
3607
(
2009
).
52.
N.
Matubayasi
and
M.
Nakahara
,
J. Chem. Phys.
110
,
3291
(
1999
).
53.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
,
1117
(
1996
).
54.
J. S.
Rowlinson
and
F. L.
Swinton
,
Liquids and Liquid Mixtures
(
Butterworths
,
London
,
1982
).
55.
N. B.
Vargaftik
,
Y. K.
Vinoradov
, and
V. S.
Yargin
,
Handbook of Physical Properties of Liquids and Gases
(
Begell House
,
New York
,
1996
).
You do not currently have access to this content.