Density functional theory Perdew–Burke–Ernzerhof [Perdew et al., Phys. Rev. Lett.77, 3865 (1996)] molecular dynamics simulations of aqueous solutions of orthophosphate species HnPO43n(n=03) provide new insights into hydrogen transfer and intermolecular and hydration properties of these important aqueous species. Extensive Car–Parrinello molecular dynamics simulations of the orthophosphate ion PO43, of the hydrogen phosphate anions, HPO42 and H2PO4, and of the orthophosphoric acid, H3PO4, in explicit water show that the process of proton transfer from HnPO43n to the surrounding water molecules is very fast, less than 1 ps, and indicate that the dehydrogenation occurs through a concerted proton hopping mechanism, which involves HnPO43n and three water molecules. Analysis of the intermolecular HnPO43n-water structure shows that the PO43 anions have a significant effect on the H-bonding network of bulk water and the presence of PO moieties induce the formation of new types of H–H interactions around this orthophosphate. Calculated probability distributions of the coordination numbers of the first hydration shell of PO43, HPO42, and H2PO4 show that these phosphate species display a flexible first coordination shell (between 7 and 13 water molecules) and that the flexibility increases on going from PO43 to H2PO4. The strength and number of hydrogen bonds of PO43, HPO42, and H2PO4 are determined through a detailed analysis of the structural correlation functions. In particular, the H-bond interactions between the oxygen atoms of the phosphates and the surrounding water molecules, which decrease on going from PO43 to the hydrogenated H2PO4 species, explain the diminished effect on the structure of water with the increasing hydrogenation of the orthophosphate anions.

1.
D.
Voet
and
J.
Voet
,
Biochemistry
, 2nd ed. (
Wiley
,
New York
,
1995
), pp.
428
434
.
2.
E.
Takeda
,
Y.
Taketani
,
N.
Sawada
,
T.
Sato
, and
H.
Yamamoto
,
BioFactors
21
,
345
(
2004
).
3.
L.
Stryer
,
Biochemistry
, 3rd ed. (
Freeman
,
New York
,
1988
), pp.
80
94
.
4.
J. C.
Knowles
,
J. Mater. Chem.
13
,
2395
(
2003
).
5.
L. L.
Hench
and
J. M.
Polak
,
Science
295
,
1014
(
2002
).
6.
M.
Navarro
,
M. P.
Ginebra
, and
J. A.
Plnell
,
J. Biomed. Mater. Res. Part A
67A
,
1009
(
2003
).
7.
J. E.
Gough
,
P.
Christian
,
C. A.
Scotchford
,
C. D.
Rudd
, and
I. A.
Jones
,
J. Biomed. Mater. Res.
59
,
481
(
2002
).
8.
I.
Ahmed
,
M. P.
Lewis
,
I.
Olsen
, and
J. C.
Knowles
,
Biomaterials
25
,
491
(
2004
).
9.
C. C.
Pye
and
W. W.
Rudolph
,
J. Phys. Chem. A
107
,
8746
(
2003
).
10.
S. A.
Brandán
,
S. B.
Díaz
,
R.
Cobos Picot
,
E. A.
Disalvo
, and
A. B.
Ben Altabef
,
Spectrochim. Acta, Part A
66
,
1152
(
2007
).
11.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
12.
M. -P.
Gaigeot
and
M.
Sprik
,
J. Phys. Chem. B
108
,
7458
(
2004
).
13.
A.
Sadoc
,
S.
Messaoudi
,
E.
Furet
,
R.
Gautier
,
E.
Le Fur
,
L.
Le Pollès
, and
J. -Y.
Pivan
,
Inorg. Chem.
46
,
4835
(
2007
).
14.
O.
Coskuner
,
J. Chem. Phys.
127
,
015101
(
2007
).
15.
R.
Spezia
,
C.
Bresson
,
C.
Den Auwer
, and
M. -P.
Gaigeot
,
J. Phys. Chem. B
112
,
6490
(
2008
).
16.
P.
Kumar
,
A. G.
Kalinichev
, and
J.
Kirkpatrick
,
J. Phys. Chem. B
113
,
794
(
2009
).
17.
I. -F.
Kuo
and
D. J.
Tobias
,
J. Phys. Chem. B
105
,
5827
(
2001
).
18.
F.
Alber
,
G.
Folkers
, and
P.
Carloni
,
J. Mol. Struct.: THEOCHEM
489
,
237
(
1999
).
19.
C.
Ebner
,
U.
Onthong
, and
M.
Probst
,
J. Mol. Liq.
118
,
15
(
2005
).
20.
QUANTUM-ESPRESSO is a community project for high-quality quantum-simulation software, based on density-functional theory and coordinated by Paolo Giannozzi. See http://www.quantum-espresso.org and http://www.pwscf.org.
21.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
22.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
23.
http://www.physics.rutgers.edu/~dhv/uspp/.
24.
B.
Delley
,
J. Chem. Phys.
92
,
508
(
1990
);
B.
Delley
,
J. Chem. Phys.
113
,
7756
(
2000
).
25.
DMOL3, Materials Studio, versions 4.0 and 4.1 from Accelrys, http://www.accelrys.com/products/mstudio.
26.
J. C.
Grossman
,
E.
Schwegler
,
E. W.
Draeger
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
120
,
300
(
2004
).
27.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
29.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
30.
E.
Schwegler
,
J. C.
Grossman
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
121
,
5400
(
2004
).
31.
P. H.-L.
Sit
and
N.
Marzari
,
J. Chem. Phys.
122
,
204510
(
2005
).
32.
M. V.
Fernández-Serra
and
E.
Artacho
,
J. Chem. Phys.
121
,
11136
(
2004
).
33.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
,
Phys. Rev. B
59
,
7413
(
1999
).
34.
D.
Asthagiri
,
L. R.
Pratt
, and
J. D.
Kress
,
Phys. Rev. E
68
,
041505
(
2003
).
35.
A. E.
Mattsson
and
T. R.
Mattsson
,
J. Chem. Theory Comput.
5
,
887
(
2009
).
36.
D.
Di Tommaso
and
N. H.
de Leeuw
,
J. Phys. Chem. B
112
,
6965
(
2008
).
37.
G. D.
Fasman
,
Handbook of Biochemistry and Molecular Biology
(
CRC
,
Boca Raton
,
1976
).
39.
P. E.
Mason
,
J. M.
Cruickshank
,
G. W.
Neilson
, and
P.
Buchanan
,
Phys. Chem. Chem. Phys.
5
,
4686
(
2003
).
40.
T.
Todorova
,
A. P.
Seitsonen
,
J.
Hutter
,
I. -F. W.
Kuo
, and
C.
Mundy
,
J. Phys. Chem. B
110
,
3685
(
2006
).
41.
A.
Pasquarello
,
I.
Petri
,
P. S.
Salmon
,
O.
Parisel
,
R.
Car
,
É.
Tóth
,
D. H.
Powell
,
H. E.
Fisher
,
L.
Helm
, and
A.
Merbach
,
Science
291
,
856
(
2001
).
42.
V. I.
Chizhik
,
A. V.
Egorov
,
A. V.
Komolkin
, and
A. A.
Vorontsova
,
J. Mol. Liq.
98
,
173
(
2002
).
43.
W. W.
Rudolph
and
G.
Irmer
,
Appl. Spectrosc.
61
,
1312
(
2007
).
You do not currently have access to this content.