Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H5O2+ cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D2d symmetry, instead of the G16 symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.

1.
O.
Vendrell
,
F.
Gatti
, and
H. -D.
Meyer
,
Angew. Chem., Int. Ed.
46
,
6918
(
2007
).
2.
O.
Vendrell
,
F.
Gatti
,
D.
Lauvergnat
, and
H. -D.
Meyer
,
J. Chem. Phys.
127
,
184302
(
2007
).
3.
O.
Vendrell
,
F.
Gatti
, and
H. -D.
Meyer
,
J. Chem. Phys.
127
,
184303
(
2007
).
4.
O.
Vendrell
and
H. -D.
Meyer
,
Phys. Chem. Chem. Phys.
10
,
4692
(
2008
).
5.
O.
Vendrell
,
F.
Gatti
, and
H. -D.
Meyer
,
Angew. Chem., Int. Ed.
48
,
352
(
2009
).
6.
A. B.
McCoy
,
X.
Huang
,
S.
Carter
,
M. Y.
Landeweer
, and
J. M.
Bowman
,
J. Chem. Phys.
122
,
061101
(
2005
).
7.
J. M.
Headrick
,
J. C.
Bopp
, and
M. A.
Johnson
,
J. Chem. Phys.
121
,
11523
(
2004
).
8.
N. I.
Hammer
,
E. G.
Diken
,
J. R.
Roscioli
,
M. A.
Johnson
,
E. M.
Myshakin
,
K. D.
Jordan
,
A. B.
McCoy
,
J. M.
Bowman
, and
S.
Carter
,
J. Chem. Phys.
122
,
244301
(
2005
).
9.
L.
McCunn
,
J.
Roscioli
,
M.
Johnson
, and
A.
McCoy
, and
S.
Carter
,
J. Phys. Chem. B
112
,
321
(
2008
).
10.
M. V.
Vener
,
O.
Kühn
, and
J.
Sauer
,
J. Chem. Phys.
114
,
240
(
2001
).
11.
K. R.
Asmis
,
N. L.
Pivonka
,
G.
Santambrogio
,
M.
Brummer
,
C.
Kaposta
,
D. M.
Neumark
, and
L.
Woste
,
Science
299
,
1375
(
2003
).
12.
T. D.
Fridgen
,
T. B.
McMahon
,
L.
MacAleese
,
J.
Lemaire
, and
P.
Maitre
,
J. Phys. Chem. A
108
,
9008
(
2004
).
13.
X.
Huang
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Chem. Phys.
122
,
044308
(
2005
).
14.
M.
Kaledin
,
A. L.
Kaledin
, and
J. M.
Bowman
,
J. Phys. Chem. A
110
,
2933
(
2006
).
15.
J.
Sauer
and
J.
Dobler
,
ChemPhysChem
6
,
1706
(
2005
).
16.
M.
Kaledin
,
A. L.
Kaledin
,
J. M.
Bowman
,
J.
Ding
, and
K. D.
Jordan
, “Calculation of the Vibrational Spectra of H5O2+ and Its Deuterium-Substituted Isotopologues by Molecular Dynamics Simulations,”
J. Phys. Chem. A
(in press).
17.
S.
Carter
,
S. J.
Culik
, and
J. M.
Bowman
,
J. Chem. Phys.
107
,
10458
(
1997
).
18.
J. M.
Bowman
,
S.
Carter
, and
X.
Huang
,
Int. Rev. Phys. Chem.
22
,
533
(
2003
).
19.
H.
Rabitz
and
O. F.
Alis
,
J. Math. Chem.
25
,
197
(
1999
).
20.
O. F.
Alis
and
H.
Rabitz
,
J. Math. Chem.
29
,
127
(
2001
).
21.
H. -D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
22.
U.
Manthe
,
H. -D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
(
1992
).
23.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H. -D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
24.
H. -D.
Meyer
and
G. A.
Worth
,
Theor. Chem. Acc.
109
,
251
(
2003
).
25.
H. -D.
Meyer
,
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
,
U.
Manthe
,
M.
Ehara
,
A.
Raab
,
M. -C.
Heitz
,
S.
Sukiasyan
,
C.
Cattarius
,
S.
Wefing
,
F.
Gatti
,
M.
Nest
,
F.
Otto
,
A.
Markmann
,
M. R.
Brill
, and
O.
Vendrell
, the MCTDH package, Version 8.4, see http://mctdh.uni-hd.de/,
2007
.
26.
F.
Gatti
,
C.
Iung
,
M.
Menou
,
Y.
Jostum
,
A.
Nauts
, and
X.
Chapuisat
,
J. Chem. Phys.
108
,
8804
(
1998
).
27.
C.
Iung
,
F.
Gatti
,
A.
Viel
, and
X.
Chapuisat
,
Phys. Chem. Chem. Phys.
1
,
3377
(
1999
).
28.
F.
Gatti
,
J. Chem. Phys.
111
,
7225
(
1999
).
29.
F.
Gatti
and
C.
Iung
,
J. Theor. Comput. Chem.
2
,
507
(
2003
).
30.
C.
Iung
and
F.
Gatti
,
Int. J. Quantum Chem.
106
,
130
(
2006
).
31.
See EPAPS Document No. E-JCPSA6-130-023924 for explicit form of the new KEO terms, exact definition of the primitive grids used for both D2d and G16, expectation values Ψ|v|Ψ and variances Ψ|v2|Ψ1/2 of the clusters in Eq. (6), and mean and rms values of the cluster terms of the n-mode representation of the potential. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
32.
D.
Lauvergnat
and
A.
Nauts
,
J. Chem. Phys.
116
,
8560
(
2002
).
33.
D. J.
Wales
,
J. Chem. Phys.
110
,
10403
(
1999
).
34.
M.
Brill
,
O.
Vendrell
,
F.
Gatti
, and
H. -D.
Meyer
, in
High Performance Computing in Science and Engineering 07
, edited by
W. E.
Nagel
,
D. B.
Kröner
, and
M.
Resch
(
Springer
,
Heidelberg
,
2008
), pp.
141
156
.
35.
A.
Jäckle
and
H. -D.
Meyer
,
J. Chem. Phys.
104
,
7974
(
1996
).
36.
A.
Jäckle
and
H. -D.
Meyer
,
J. Chem. Phys.
109
,
3772
(
1998
).
37.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
38.
W. K.
Hastings
,
Biometrika
57
,
97
(
1970
).
39.
D.
Chandler
,
Introduction to Modern Statistical Mechanics
(
Oxford University Press
,
New York
,
1987
).
40.
J. M.
Bowman
,
T.
Carrington
, Jr.
, and
H. -D.
Meyer
,
Mol. Phys.
106
,
2145
(
2008
).
41.
H. -D.
Meyer
,
F.
Le Quéré
,
C.
Léonard
, and
F.
Gatti
,
Chem. Phys.
329
,
179
(
2006
).
42.
L. J.
Doriol
,
F.
Gatti
,
C.
Iung
, and
H. -D.
Meyer
,
J. Chem. Phys.
129
,
224109
(
2008
).
43.
G. G.
Balint-Kurti
,
R. N.
Dixon
, and
C. C.
Marston
,
J. Chem. Soc., Faraday Trans.
86
,
1741
(
1990
).
44.
A.
Nauts
and
X.
Chapuisat
,
Mol. Phys.
55
,
1287
(
1985
).

Supplementary Material

You do not currently have access to this content.