Recently, the supercooled Wahnström binary Lennard-Jones mixture was partially crystallized into MgZn2 phase crystals in lengthy molecular dynamics simulations. We present molecular dynamics simulations of a modified Kob–Andersen binary Lennard-Jones mixture that also crystallizes in lengthy simulations here, however, by forming pure fcc crystals of the majority component. The two findings motivate this paper that gives a general thermodynamic and kinetic treatment of the stability of supercooled binary mixtures, emphasizing the importance of negative mixing enthalpy whenever present. The theory is used to estimate the crystallization time in a Kob–Andersen mixture from the crystallization time in a series of related systems. At T=0.40 we estimate this time to be 5×107 time units (0.1ms). A new binary Lennard-Jones mixture is proposed that is not prone to crystallization and faster to simulate than the two standard binary Lennard-Jones mixtures. This is obtained by removing the like-particle attractions by switching to Weeks–Chandler–Andersen type potentials, while maintaining the unlike-particle attraction.

1.
2.
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. E
51
,
4626
(
1995
);
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. E
52
,
4134
(
1995
).
3.
T. A.
Weber
and
F. H.
Stillinger
,
Phys. Rev. B
31
,
1954
(
1985
).
4.
U. R.
Pedersen
,
N. P.
Bailey
,
J. C.
Dyre
, and
T. B.
Schrøder
, e-print arXiv:0706.0813;
S.
Toxvaerd
,
T. B.
Schrøder
, and
J. C.
Dyre
, e-print arXiv:0712.0377.
5.
U. R.
Pedersen
,
P.
Harrowell
,
T. B.
Schrøder
, and
J. C.
Dyre
(unpublsihed).
6.
See, e.g.,
A.
Laaksonen
,
R.
McGraw
, and
H.
Vehkamäki
,
J. Chem. Phys.
111
,
2019
(
1999
) and references therein.
7.
J. R.
Fernandez
and
P.
Harrowell
,
Phys. Rev. E
67
,
011403
(
2003
).
8.
D. W.
Oxtoby
,
J. Phys.: Condens. Matter
4
,
7627
(
1992
).
9.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
110
,
1591
(
1999
).
10.
J. S.
Rowlinson
,
Liquid and Liquid Mixtures
(
Butterworths
,
London
,
1969
).
11.
J. O.
Hirschfelder
,
C. F.
Curtiss
, and
R. B.
Bird
,
Molecular Theory of Gases and Liquids
(
Wiley
,
New York
,
1954
), Chap. 13.3.
12.
The Tfus,A can be obtained from Eq. (7) for small xB. The melting temperature for a pure LJ system at p=10 is, Tfus=1.4017(3) and the corresponding densities are ρ(s)=1.0630(8) and ρ(l)=0.98665(3) of solid(s) fcc LJ particles and liquid (l).
E. A.
Mastny
and
J. J.
de Pablo
,
J. Chem. Phys.
127
,
104504
(
2007
), from where also the melting enthalpy, ΔfusH can obtained using the (exact) Clapeyron equation, it is ΔfusH=1.675. The mixing potential energy per solvent A particle, Δmixupot(Tfus,A,xB) at p=10 are obtained from MD simulations. The mixing potential energy is self-consistent with the approximation in Eq. (3) assumed to be temperature independent for small xB.
14.
J. J.
Morales
,
L. F.
Rull
, and
S.
Toxvaerd
,
Comput. Phys. Commun.
56
,
129
(
1989
).
15.
S.
Kay
,
Fundamentals of Statistical Signal Processing Volume I: Estimation Theory
(
Prentice-Hall
,
Englewood Cliffs
,
1993
).
16.
J.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
17.
F.
Calvo
,
T. V.
Bogdan
,
V. K.
de Souza
, and
D. J.
Wales
,
J. Chem. Phys.
127
,
044508
(
2007
).
18.
C.
De Michele
,
F.
Sciortino
, and
A.
Coniglio
,
J. Phys.: Condens. Matter
16
,
L489
(
2004
).
19.
S. R.
Williams
and
D. J.
Evans
,
Phys. Rev. Lett.
96
,
015701
(
2006
).
20.
L. O.
Hedges
,
L.
Maibaum
,
D.
Chandler
, and
J. P.
Garrahan
,
J. Chem. Phys.
127
,
211101
(
2007
).
You do not currently have access to this content.