A new potential energy surface for ArCO2 is constructed at the coupled-cluster singles and doubles with noniterative inclusion of connected triple [CCSD(T)] level with augmented correlation-consistent triple-zeta (aug-cc-pVTZ) basis set plus midpoint bond functions. The Q3 normal mode for the v3 antisymmetric stretching vibration of CO2 is involved in the construction of the potential. Effective two-dimensional potentials with CO2 in the ground and first excited v3 vibrational states are obtained by averaging a three-dimensional potential for each case over the Q3 asymmetric stretch vibrational coordinate. Both potentials have only a T-shaped minimum with a well depth of 200.97 and 201.37cm1, respectively. No linear local minima are detected. The radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm are employed to calculate the related rovibrational energy levels. The calculated band origin shift of the complex agrees very well with the observed one (−0.474 versus 0.470cm1). In addition, the predicted infrared spectra based on the two averaged potentials are in excellent agreement with the available experimental data, which again testifies the accuracy of the new potentials.

1.
J. M.
Steed
,
T. A.
Dixon
, and
W.
Klemperer
,
J. Chem. Phys.
70
,
4095
(
1979
).
2.
G. T.
Fraser
,
A. S.
Pine
, and
R. D.
Suenram
,
J. Chem. Phys.
88
,
6157
(
1988
).
3.
S. W.
Sharpe
,
R.
Sheeks
,
C.
Witting
, and
R. A.
Beaudet
,
Chem. Phys. Lett.
151
,
267
(
1988
).
4.
J. M.
Sperhac
,
M. J.
Weida
, and
D. J.
Nesbitt
,
J. Chem. Phys.
104
,
2202
(
1996
).
5.
S. W.
Sharpe
,
D.
Reifschneider
,
C.
Wittig
, and
R. A.
Beaudet
,
J. Chem. Phys.
94
,
233
(
1991
).
6.
R. W.
Randall
,
M. A.
Walsh
, and
B. J.
Howard
,
Faraday Discuss. Chem. Soc.
85
,
13
(
1988
).
7.
E. J.
Bohac
,
M. D.
Marshall
, and
R. E.
Miller
,
J. Chem. Phys.
97
,
4890
(
1992
).
8.
J.
Thievin
,
Y.
Cadudal
,
R.
Georges
, and
A. A.
Vigasin
,
J. Mol. Spectrosc.
240
,
141
(
2006
).
9.
J. M.
Hutson
,
A.
Ernesti
,
M. M.
Law
,
C. F.
Roche
, and
R. J.
Wheatley
,
J. Chem. Phys.
105
,
9130
(
1996
).
10.
C. F.
Roche
,
A.
Ernesti
,
J. M.
Huston
, and
A. S.
Dickinson
,
J. Chem. Phys.
104
,
2156
(
1996
).
11.
S. E.
Lokshtanov
,
S. V.
Ivanov
, and
A. A.
Vigasin
,
J. Mol. Struct.
742
,
31
(
2005
).
12.
M. W.
Severson
,
J. Chem. Phys.
109
,
1343
(
1998
).
13.
H. J.
Loesch
,
Chem. Phys.
18
,
431
(
1976
).
14.
G. D.
Billing
,
Chem. Phys.
91
,
327
(
1984
).
15.
G. A.
Parker
,
R. L.
Snow
, and
R. T.
Pack
,
J. Chem. Phys.
64
,
1668
(
1976
).
16.
R. K.
Preston
and
R. T.
Pack
,
J. Chem. Phys.
66
,
2480
(
1977
).
17.
M. A.
ter Horst
and
C. J.
Jameson
,
J. Chem. Phys.
105
,
6787
(
1996
).
18.
P. J.
Marshall
,
M. M.
Szczesniak
,
J.
Sadlej
,
G.
Chalasinski
,
M. A.
ter Horst
, and
C. J.
Jameson
,
J. Chem. Phys.
104
,
6569
(
1996
).
19.
A. J.
Misquitta
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Chem. Phys.
112
,
5308
(
2000
).
20.
G.
Chalasinski
and
M. M.
Szczesniak
,
Chem. Rev. (Washington, D.C.)
100
,
4227
(
2000
).
21.
M.
Geleijns
,
P. E. S.
Wormer
, and
A.
van der Avoird
,
J. Chem. Phys.
117
,
7551
(
2002
).
22.
F.
Paesani
and
K. B.
Whaley
,
Mol. Phys.
104
,
61
(
2006
).
23.
H.
Ran
,
Y. Z.
Zhou
, and
D. Q.
Xie
,
J. Chem. Phys.
126
,
204304
(
2007
).
24.
D. Q.
Xie
,
H.
Ran
, and
Y. Z.
Zhou
,
Int. Rev. Phys. Chem.
26
,
487
(
2007
).
25.
P.
Jankowski
,
J. Chem. Phys.
128
,
154311
(
2008
).
26.
H.
Li
and
R. J.
Le Roy
,
Phys. Chem. Chem. Phys.
10
,
4128
(
2008
).
27.
H.
Li
,
N.
Blinov
,
P. -N.
Roy
, and
R. J.
Le Roy
,
J. Chem. Phys.
130
,
144305
(
2009
).
28.
L. S.
Rothman
,
R. L.
Hawkins
,
R. B.
Wattson
, and
R. R.
Gamache
,
J. Quant. Spectrosc. Radiat. Transf.
48
,
537
(
1992
).
29.
A.
Chedin
,
J. Mol. Spectrosc.
76
,
430
(
1979
).
30.
J. M.
Bowman
and
B.
Gazdy
,
J. Chem. Phys.
94
,
816
(
1991
).
31.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
32.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
33.
T. B.
Pedersen
,
B.
Fernandez
,
H.
Koch
, and
J.
Makarewicz
,
J. Chem. Phys.
115
,
8431
(
2001
).
34.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
35.
See EPAPS Document No. E-JCPSA6-130-044924 for ASCII files containing the FORTRAN codes for generating the vibrationally averaged PESs for the ground and excited states of CO2, the calculated rovibrational energy levels, and the predicted infrared spectra with comparison with the observed spectra of ArCO2. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
36.
M.
Iida
,
Y.
Ohshima
, and
Y.
Endo
,
J. Phys. Chem.
97
,
357
(
1993
).
37.
MOLPRO, a package of ab initio programs designed by
H. J.
Werner
and
P. J.
Knowles
, version 2006.1,
R. D.
Amos
 et al
38.
J.
Tennyson
and
B. T.
Sutcliffe
,
Mol. Phys.
51
,
887
(
1984
).
39.
S.
Miller
and
J.
Tennyson
,
J. Mol. Spectrosc.
128
,
530
(
1988
).
40.
S. Y.
Lin
and
H.
Guo
,
J. Chem. Phys.
117
,
5183
(
2002
).
41.
R. Q.
Chen
,
G. B.
Ma
, and
H.
Guo
,
Chem. Phys. Lett.
320
,
567
(
2000
).
42.
C.
Lanczos
,
J. Res. Natl. Bur. Stand.
45
,
255
(
1950
).
43.
H.
Guo
,
R. Q.
Chen
, and
D. Q.
Xie
,
J. Theor. Comput. Chem.
1
,
173
(
2002
).
44.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
45.
P.
Jensen
and
V.
Spirko
,
J. Mol. Spectrosc.
118
,
208
(
1986
).
46.
C. R. L.
Sueur
,
S.
Miller
,
J.
Tennyson
, and
B. T.
Sutcliffe
,
Mol. Phys.
76
,
1147
(
1992
).
47.
A.
van der Avoird
,
P. E. S.
Wormer
, and
R.
Moszynski
,
Chem. Rev. (Washington, D.C.)
94
,
1931
(
1994
).
48.
H.
Ran
and
D. Q.
Xie
,
J. Chem. Phys.
128
,
124323
(
2008
).
49.
J. K. G.
Watson
,
J. Chem. Phys.
46
,
1935
(
1967
).

Supplementary Material

You do not currently have access to this content.