The hydrogen abstraction reactions of fluoroalkane isomers CF2HCFHCF2H and CF3CFHCFH2 with the OH radicals have been studied theoretically by a dual-level direct dynamics method. Optimized geometries and frequencies of all the stationary points and extra points along the minimum-energy path are obtained at the BB1K/6-31+G(d,p) level of theory, and then the energy profiles are refined at G3(MP2) level of theory. Using the improved canonical variational transition-state theory (ICVT) with the small-curvature tunneling correction (SCT), the rate constants for each channel are calculated over a wide temperature range of 200–1000 K. Our results show that the tunneling correction plays an important role in the rate constant calculation in the low temperature range. The calculated ICVT/SCT rate constants are consistent with available experimental data. Our calculations indicate the contribution of the abstraction from the –CFH– group of isomeric compounds CF2HCFHCF2H and CF3CFHCFH2 to the overall reactions is quite different over the whole temperature range due to the effect of different groups at both sides of –CFH– group. Furthermore, to further reveal the thermodynamic properties, the enthalpies of formation of the two reactants CF2HCFHCF2H, and CF3CFHCFH2, and the product radicals CF2HCFCF2H, CF2HCFHCF2, CF3CFCFH2, and CF3CFHCFH are obtained by using isodesmic reactions.

1.
W. B.
DeMore
and
E. W.
Wilson
, Jr.
,
J. Phys. Chem. A
103
,
573
(
1999
).
2.
Z.
Zhang
,
S.
Padmaja
,
R. D.
Saini
,
R. E.
Huie
, and
M. J.
Kurylo
,
J. Phys. Chem.
98
,
4312
(
1994
).
3.
H.
Gao
,
Y.
Wang
,
J.
Liu
,
L.
Yang
,
Z.
Li
, and
C.
Sun
,
J. Phys. Chem. A
112
,
4176
(
2008
).
4.
B.
Rajakumar
,
R. W.
Portmann
,
J. B.
Burkholder
, and
A. R.
Ravishankara
,
J. Phys. Chem. A
110
,
6724
(
2006
).
5.
K.
Tokuhashi
,
H.
Nagai
,
A.
Takahashi
,
M.
Kaise
,
S.
Kondo
,
A.
Sekiya
,
M.
Takahashi
,
Y.
Gotoh
, and
A.
Suga
,
J. Phys. Chem. A
103
,
2664
(
1999
).
6.
W. B.
DeMore
,
J. Phys. Chem.
100
,
5813
(
1996
).
7.
D. D.
Nelson
,
M. S.
Zahniser
,
C. E.
Kolb
, and
H.
Magid
,
J. Phys. Chem. A
99
,
16301
(
1995
).
8.
S.
Urata
,
A.
Takada
,
T.
Uchimaru
, and
A. K.
Chandra
,
Chem. Phys. Lett.
368
,
215
(
2003
).
9.
C. J.
Percival
,
G.
Marston
, and
R. P.
Wayne
,
Atmos. Environ.
29
,
305
(
1995
).
10.
D. G.
Truhlar
, in
The Reaction Path in Chemistry: Current Approaches and Perspectives
, edited by
D.
Heidrich
(
Kluwer
,
Dordrecht, The Netherlands
,
1995
), p.
229
.
11.
D. G.
Truhlar
,
B. C.
Garrent
, and
S. J.
Klippenstein
,
J. Phys. Chem.
100
,
12771
(
1996
).
12.
W. P.
Hu
and
D. G.
Truhlar
,
J. Am. Chem. Soc.
118
,
860
(
1996
).
14.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision A.1, Gaussian Inc., Pittsburgh, PA,
2003
.
15.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
16.
A. D.
Becke
,
J. Chem. Phys.
104
,
1040
(
1996
).
17.
Y.
Zhao
,
B. J.
Lynch
, and
D. G.
Truhlar
,
J. Phys. Chem. A
108
,
2715
(
2004
).
18.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
110
,
4703
(
1999
).
19.
Y. Y.
Chuang
,
J. C.
Corchado
, and
D. G.
Truhlar
,
J. Phys. Chem. A
103
,
1140
(
1999
).
20.
J. C.
Corchado
,
Y. -Y.
Chuang
,
P. L.
Fast
 et al, POLYRATE, version 9.3.1, University of Minnesota: Minneapolis,
2005
.
21.
B. C.
Garrett
,
D. G.
Truhlar
,
R. S.
Grev
, and
A. W.
Magnuson
,
J. Phys. Chem.
84
,
1730
(
1980
).
22.
D. G.
Truhlar
and
B. C.
Garrett
,
Acc. Chem. Res.
13
,
440
(
1980
).
23.
D. G.
Truhlar
,
A. D.
Isaacson
, and
B. C.
Garrett
, in
The Theory of Chemical Reaction Dynamics
, edited by
M.
Baer
(
CRC
,
Boca Raton, FL
,
1985
), p.
65
.
24.
D. G.
Truhlar
and
B. C.
Garrett
,
Annu. Rev. Phys. Chem.
35
,
159
(
1984
).
25.
D. H.
Lu
,
T. N.
Truong
,
V. S.
Melissas
,
G. C.
Lynch
,
Y. P.
Liu
,
B. C.
Grarrett
,
R.
Steckler
,
A. D.
Issacson
,
S. N.
Rai
,
G. C.
Hancock
,
J. G.
Lauderdale
,
T.
Joseph
, and
D. G.
Truhlar
,
Comput. Phys. Commun.
71
,
235
(
1992
).
26.
Y. -P.
Liu
,
G. C.
Lynch
,
T. N.
Truong
,
D. -H.
Lu
,
D. G.
Truhlar
, and
B. C.
Garrett
,
J. Am. Chem. Soc.
115
,
2408
(
1993
).
27.
M.
Taghikhani
,
G. A.
Parsafar
, and
H.
Sabzyan
,
J. Phys. Chem. A
109
,
8158
(
2005
).
28.
A.
Galano
,
J. R.
Alvarez-ldaboy
,
M. E.
Ruiz-Santoyo
, and
A.
Vivier-Bunge
,
ChemPhysChem
5
,
1379
(
2004
).
29.
Y.
Wang
,
J.
Liu
,
L.
Yang
,
X.
Zhao
,
Y.
Ji
, and
Z.
Li
,
J. Phys. Chem. A
111
,
7761
(
2007
).
30.
See EPAPS Document No. E-JCPSA6-130-011923 for frequencies of the stationary points; rate constants; scanned energy profiles;.VMEP, VaG, and ZPE curves; and TST, ICVT and ICVT/SCT curves. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
31.
W. P.
Hu
,
I.
Rossi
,
J. C.
Corchado
, and
D. G.
Truhlar
,
J. Phys. Chem. A
101
,
6911
(
1997
).
32.
A.
Mansergas
and
J. M.
Anglada
,
ChemPhysChem
8
,
1534
(
2007
).
33.
À.
Gonzàlez-Lafont
,
J. M.
Lluch
,
A.
Varela-Àlvarez
, and
J. A.
Sordo
,
J. Phys. Chem. B
112
,
328
(
2008
).
34.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 80th ed. (
CRC Press
,
New York
,
1999
).
35.
T.
Shimanouchi
, Tables of Molecular Vibrational Frequencies Consolidated, Natl. Bur. Stand. (U.S.) (U.S. GPO, Washington, D.C.,
1972
), Vol.
1
.
36.
NIST Chemistry Webbook, edited by
P. J.
Linstrom
and
W. G.
Mallard
, available from NIST Standard Reference Database Number 69, http://webbook.Nist.Gov/chemistry.
37.
J. P.
Senosiain
,
S. J.
Klippenstein
, and
J. A.
Miller
,
J. Phys. Chem. A
109
,
6045
(
2005
).
38.
J. R.
Alvarez-Idaboy
,
N.
Mora-Diez
, and
A.
Vivier-Bunge
,
J. Am. Chem. Soc.
122
,
3715
(
2000
).
39.
K. W.
McKee
,
M. A.
Blitz
,
P. A.
Cleary
,
D. R.
Glowacki
,
M. J.
Pilling
,
P. W.
Seakins
, and
L.
Wang
,
J. Phys. Chem. A
111
,
4043
(
2007
).

Supplementary Material

You do not currently have access to this content.