We designed a cluster surface smoothing method that can fast locate the minimum of the funnels in the potential energy surface (PES). By inserting the cluster surface smoothing approach into the gradient-based local optimization (LO)-phase and the global optimization (GO)-phase as a second LO-phase, the GO-phase can focus on the global information oWalesf the PES over the various funnels. Following the definition of “basin-hopping” method [D. J. and J. P. K. Doye, J. Phys. Chem. A101, 5111 (1997)], this method is named as “funnel hopping.” Taking a simple version of the genetic algorithm as the GO-phase, the funnel-hopping method can locate all the known putative global minima of the Lennard-Jones clusters and the extremely short-ranged Morse clusters up to cluster size N=160 with much lower costs compared to the basin-hopping methods. Moreover the funnel-hopping method can locate the minimum of various funnels in the PES in one calculation.

1.
F. H.
Stillinger
,
Phys. Rev. E
59
,
48
(
1999
).
2.
F.
Baletto
and
R.
Ferrando
,
Rev. Mod. Phys.
77
,
371
(
2005
).
3.
J. P. K.
Doye
, in
Global Optimization: Scientific and Engineering Case Studies
, edited by
J. D.
Pinter
(
Springer-Verlag
,
Berlin
,
2006
), pp.
103
139
.
4.
H. W.
Kroto
,
A. W.
Allaf
, and
S. P.
Balm
,
Chem. Rev. (Washington, D.C.)
91
,
1213
(
1991
).
5.
D. J.
Wales
and
M. P.
Hodges
,
Chem. Phys. Lett.
286
,
65
(
1998
).
6.
T.
James
,
D. J.
Wales
, and
J.
Hernandez-Rojas
,
Chem. Phys. Lett.
415
,
302
(
2005
).
7.
H.
Takeuchi
,
J. Chem. Inf. Model.
48
,
2226
(
2008
).
8.
P.
Pyykko
,
Chem. Soc. Rev.
37
,
1967
(
2008
).
9.
S.
Darby
,
T. V.
Mortimer-Jones
,
R. L.
Johnston
, and
C.
Roberts
,
J. Chem. Phys.
116
,
1536
(
2002
).
10.
R.
Ferrando
,
J.
Jellinek
, and
R. L.
Johnston
,
Chem. Rev. (Washington, D.C.)
108
,
845
(
2008
).
11.
J. E.
Jones
and
A. E.
Ingham
,
Proc. R. Soc. London, Ser. A
107
,
636
(
1925
).
12.
P. M.
Morse
,
Phys. Rev.
34
,
57
(
1929
).
13.
J. P. K.
Doye
,
D. J.
Wales
, and
R. S.
Berry
,
J. Chem. Phys.
103
,
4234
(
1995
).
14.
J. P. K.
Doye
and
D. J.
Wales
,
J. Phys. B
29
,
4859
(
1996
).
15.
L. J.
Cheng
and
J. L.
Yang
,
J. Phys. Chem. A
111
,
5287
(
2007
).
16.
B.
Hartke
,
J. Phys. Chem.
97
,
9973
(
1993
).
17.
D. M.
Deaven
and
K. M.
Ho
,
Phys. Rev. Lett.
75
,
288
(
1995
).
18.
D. M.
Deaven
,
N.
Tit
,
J. R.
Morris
, and
K. M.
Ho
,
Chem. Phys. Lett.
256
,
195
(
1996
).
19.
S. K.
Gregurick
,
M. H.
Alexander
, and
B.
Hartke
,
J. Chem. Phys.
104
,
2684
(
1996
).
20.
M. D.
Wolf
and
U.
Landman
,
J. Phys. Chem. A
102
,
6129
(
1998
).
21.
C.
Roberts
,
R. L.
Johnston
, and
N. T.
Wilson
,
Theor. Chem. Acc.
104
,
123
(
2000
).
22.
B.
Hartke
,
J. Comput. Chem.
20
,
1752
(
1999
).
23.
R. L.
Johnston
,
Dalton Trans.
22
,
4193
(
2003
).
24.
W. S.
Cai
,
H. Y.
Jiang
, and
X. G.
Shao
,
J. Chem. Inf. Comput. Sci.
42
,
1099
(
2002
).
25.
X. G.
Shao
,
L. J.
Cheng
, and
W. S.
Cai
,
J. Chem. Phys.
120
,
11401
(
2004
).
26.
L. J.
Cheng
,
W. S.
Cai
, and
X. G.
Shao
,
Chem. Phys. Lett.
389
,
309
(
2004
).
27.
W.
Pullan
,
J. Comput. Chem.
26
,
899
(
2005
).
28.
A.
Grosso
,
M.
Locatelli
, and
F.
Schoen
,
Math. Program.
110
,
373
(
2007
).
29.
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
,
5111
(
1997
).
30.
R. H.
Leary
,
J. Global Optim.
18
,
367
(
2000
).
31.
D. J.
Wales
and
H. A.
Scheraga
,
Science
285
,
1368
(
1999
).
32.
M.
Iwamatsu
and
Y.
Okabe
,
Chem. Phys. Lett.
399
,
396
(
2004
).
33.
L. X.
Zhan
,
B.
Piwowar
,
W. K.
Liu
,
P. J.
Hsu
,
S. K.
Lai
, and
J. Z. Y.
Chen
,
J. Chem. Phys.
120
,
5536
(
2004
).
34.
M.
Locatelli
and
F.
Schoen
,
Comput. Optim. Appl.
26
,
173
(
2003
).
35.
H. F.
Xu
and
B. J.
Berne
,
J. Chem. Phys.
112
,
2701
(
2000
).
36.
W. S.
Cai
and
X. G.
Shao
,
J. Comput. Chem.
23
,
427
(
2002
).
37.
J.
Lee
and
I. H.
Lee
,
Phys. Rev. Lett.
91
,
080201
(
2003
).
38.
S. V.
Krivov
,
Phys. Rev. E
66
,
025701
(
2002
).
39.
M.
Locatelli
and
F.
Schoen
,
Comput. Optim. Appl.
21
,
55
(
2002
).
40.
X. G.
Shao
,
L. J.
Cheng
, and
W. S.
Cai
,
J. Comput. Chem.
25
,
1693
(
2004
).
41.
T.
Zhou
,
W. J.
Bai
,
L. J.
Cheng
, and
B. H.
Wang
,
Phys. Rev. E
72
,
016702
(
2005
).
42.
H.
Takeuchi
,
J. Chem. Inf. Model.
46
,
2066
(
2006
).
43.
S. T.
Call
,
D. Y.
Zubarev
, and
A. I.
Boldyrev
,
J. Comput. Chem.
28
,
1177
(
2007
).
44.
X. G.
Shao
,
X. L.
Yang
, and
W. S.
Cai
,
J. Comput. Chem.
29
,
1772
(
2008
).
45.
Y.
Wang
,
J.
Zhuang
, and
X. J.
Ning
,
Phys. Rev. E
78
,
026708
(
2008
).
46.
D. J.
Wales
,
Energy Landscapes with Applications to Clusters, Biomolecules and Glasses
(
Cambridge University
,
Cambridge
,
2003
).
47.
D. J.
Wales
,
J. P. K.
Doye
,
A.
Dullweber
,
M. P.
Hodges
,
F. Y.
Naumkin
,
F.
Calvo
,
J.
Hernández-Rojas
, and
T. F.
Middleton
, The Cambridge Cluster Database, http://www-wales.ch.cam.ac.uk/CCD.html.
48.
J. P. K.
Doye
,
R. H.
Leary
,
M.
Locatelli
, and
F.
Schoen
,
INFORMS J. Comput.
16
,
371
(
2004
).
49.
D. C.
Liu
and
J.
Nocedal
,
Math. Program.
45
,
503
(
1989
).
50.
L. J.
Cheng
and
J. L.
Yang
,
J. Chem. Phys.
127
,
124104
(
2007
).
51.
J. P. K.
Doye
and
D. J.
Wales
,
J. Chem. Soc., Faraday Trans.
93
,
4233
(
1997
).
52.
Each surface triangle is a surface atom site plus two nearest neighbor atom sites. How to calculate the surface triangles and V point is too technical to appear here. The source codes are available upon request to the authors (clj@ustc.edu).
53.
Table of the known global minima of Morse clusters up to N=160 are available from the webpage http://staff.ustc.edu.cn/~clj/morse/table.html.
54.
R. H.
Leary
and
J. P. K.
Doye
,
Phys. Rev. E
60
,
R6320
(
1999
).
55.
L. J.
Cheng
,
W. S.
Cai
, and
X. G.
Shao
,
Chem. Phys. Lett.
404
,
182
(
2005
).
56.
Y. H.
Xiang
,
L. J.
Cheng
,
W. S.
Cai
, and
X. G.
Shao
,
J. Phys. Chem. A
108
,
9516
(
2004
).
57.
D. J.
Wales
and
T. V.
Bogdan
,
J. Phys. Chem. B
110
,
20765
(
2006
).
You do not currently have access to this content.