We use numerical simulation data for several model interatomic potentials to confirm the critical point-Zeno-line relations of similarity (CZS) for the liquid branch of the coexistence curve suggested earlier [E. M. Apfelbaum and V. S. Vorob’ev, J. Phys. Chem. B112, 13064 (2008)]. These relations have been based on the analysis of experimental values for the critical point parameters and liquid-gas coexistence curves for a large number of real substances and two model systems. We show that the numerical modeling data as a whole confirm the CZS in the domain of the existence of liquid state. The deviations from CZS relations take place for two cases: (a) the numerically calculated coexistence curve gets into domain corresponding to solidification; (b) the liquid-vapor transition becomes metastable with respect to freezing.

1.
E. M.
Apfelbaum
and
V. S.
Vorob’ev
,
J. Phys. Chem. B
112
,
13064
(
2008
).
2.
E. M.
Apfelbaum
and
V. S.
Vorob’ev
,
Chem. Phys. Lett.
467
,
318
(
2009
).
3.
E. M.
Apfelbaum
and
V. S.
Vorob’ev
,
J. Phys. Chem. B
113
,
3521
(
2009
).
4.
L.
Vega
,
E.
de Miguel
, and
L. F.
Rull
,
J. Chem. Phys.
96
,
2296
(
1992
).
5.
M. H. J.
Hagen
and
D. J.
Frenkel
,
J. Chem. Phys.
101
,
4093
(
1994
).
6.
G.
Orkoulas
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
110
,
1581
(
1999
).
7.
D. L.
Pagan
and
J. D.
Gunton
,
J. Chem. Phys.
122
,
184515
(
2005
).
8.
F.
Del Rio
,
E.
Avalos
,
R.
Espindola
,
L. F.
Rull
,
G.
Jakson
, and
L.
Santiago
,
Mol. Phys.
100
,
2531
(
2002
).
9.
H.
Liu
,
S.
Garde
, and
S.
Kumar
,
J. Chem. Phys.
123
,
174505
(
2005
).
10.
D. H.
Patel
,
H.
Docherty
,
S.
Varga
,
A.
Galindo
, and
G. C.
Maitland
,
Mol. Phys.
103
,
129
(
2005
).
11.
J. R.
Elliott
and
L.
Hu
,
J. Chem. Phys.
110
,
3043
(
1999
).
12.
J.
Largo
,
J. R.
Solano
,
S. B.
Yuste
, and
A.
Santos
,
J. Chem. Phys.
122
,
084510
(
2005
).
13.
S. B.
Kiselev
,
J. F.
Ely
, and
J. R.
Elliot
, Jr.
,
Mol. Phys.
104
,
2545
(
2006
).
14.
J. K.
Singh
,
D. A.
Kofke
, and
J. R.
Errington
,
J. Chem. Phys.
119
,
3405
(
2003
).
15.
P.
Orea
,
Y.
Duda
,
V. C.
Weiss
,
W.
Schrörer
, and
J.
Alejandre
,
J. Chem. Phys.
120
,
11754
(
2004
).
16.
M.
Hasegawa
,
J. Chem. Phys.
108
,
208
(
1998
).
17.
H.
Okumura
and
F.
Yonezawa
,
J. Chem. Phys.
113
,
9162
(
2000
).
18.
I.
Charpentier
and
N.
Jakse
,
J. Chem. Phys.
123
,
204910
(
2005
).
19.
G.
Galliero
,
C.
Boned
,
A.
Baylaucq
, and
F.
Montel
,
Phys. Rev. E
73
,
061201
(
2006
).
20.
A.
Panagiotopoulos
,
J. Chem. Phys.
112
,
7132
(
2000
).
21.
P.
Orea
,
Y.
Reyes-Mercado
, and
Y.
Duda
,
Phys. Lett. A
372
,
7024
(
2008
).
22.
J. Ph.
Camp
and
G. N.
Patey
,
J. Chem. Phys.
114
,
399
(
2001
).
23.
J. Ph.
Camp
,
Phys. Rev. E
67
,
011503
(
2003
).
24.
P.
Orea
and
Y.
Duda
,
J. Chem. Phys.
128
,
134508
(
2008
).
25.
J. M.
Caillol
,
F. L.
Verso
,
E.
Scholl-Pashinger
, and
J. J.
Weis
,
Mol. Phys.
105
,
1813
(
2007
).
26.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
109
,
1093
(
1998
).
27.
G. A.
Martynov
,
Fundamental Theory of Liquids
(
Hilger
,
Bristol
,
1992
).
28.
J. O.
Hirschfelder
,
Ch. F.
Curtiss
, and
R. B.
Bird
,
Molecular Theory of Gases and Liquids
(
Wiley
,
New York
,
1954
).
29.
R.
Balescu
,
Equilibrium and not Equilibrium Statistical Mechanics
(
Wiley-Interscience
,
New York
,
1975
).
30.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1990
).
31.
E. A.
Guggenheim
,
J. Chem. Phys.
13
,
253
(
1945
).
32.
L. P.
Filippov
,
High Temp.
22
,
479
(
1984
) (in Russian).
33.
A.
Mulero
and
M. I.
Parra
,
Phys. Chem. Liq.
46
,
263
(
2008
).
34.
E. M.
Apfelbaum
,
V. S.
Vorob’ev
, and
G. A.
Martynov
,
J. Phys. Chem. B
110
,
8474
(
2006
).
35.
E. M.
Apfelbaum
,
V. S.
Vorob’ev
, and
G. A.
Martynov
,
J. Chem. Phys.
127
,
064507
(
2007
).
36.
F.
Lotfi
,
J.
Vrabec
, and
J.
Fisher
,
Mol. Phys.
76
,
1319
(
1992
).
37.
M. E.
Fisher
,
S.
Ma
, and
B. G.
Nickel
,
Phys. Rev. Lett.
29
,
917
(
1972
).
You do not currently have access to this content.