Biomolecular systems are inherently hierarchic and many simulation methods that try to integrate atomistic and coarse-grained (CG) models have been proposed, which are called multiscale simulations. Here, we propose a new multiscale molecular dynamics simulation method which can achieve high accuracy and high sampling efficiency simultaneously without aforehand knowledge on the CG potential and test it for a biomolecular system. In our method, a self-learning strategy is introduced to progressively improve the CG potential by an iterative way. (1) A CG model, coupled with the atomistic model, is used for obtaining CG structural ensemble, (2) which is mapped to the atomistic models. (3) The resulting atomistic ensemble is used for deriving the next-generation CG model. Two tests show that this method can rapidly improve the CG potential and achieve efficient sampling even starting from an unrealistic CG potential. The resulting free energy agreed well with the exact result and the convergence by the method was much faster than that by the replica exchange method. The method is generic and can be applied to many biological as well as nonbiological problems.

1.
M.
Levitt
and
A.
Warshel
,
Nature (London)
253
,
694
(
1975
).
2.
J. A.
McCammon
,
B. R.
Gelin
, and
M.
Karplus
,
Nature (London)
267
,
585
(
1977
).
3.
M.
Karplus
and
J. A.
McCammon
,
Nat. Struct. Biol.
9
,
646
(
2002
).
4.
V.
Tozzini
,
Curr. Opin. Struct. Biol.
15
,
144
(
2005
).
5.
S.
Takada
,
Z.
Luthey-Schulten
, and
P.
Wolynes
,
J. Chem. Phys.
110
,
11616
(
1999
).
6.
W.
Li
,
J.
Zhang
,
J.
Wang
, and
W.
Wang
,
J. Am. Chem. Soc.
130
,
892
(
2008
).
7.
A. E.
van Giessen
and
J.
Straub
,
J. Chem. Theory Comput.
2
,
674
(
2006
).
8.
G. S.
Ayton
,
W. G.
Noid
, and
G. A.
Voth
,
Curr. Opin. Struct. Biol.
17
,
192
(
2007
).
9.
M.
Praprotnik
,
L.
Delle Site
, and
K.
Kremer
,
Annu. Rev. Phys. Chem.
59
,
545
(
2008
).
10.
K.
Kremer
and
F.
Müller-Plathe
,
MRS Bull.
26
,
205
(
2001
).
11.
E.
Villa
,
A.
Balaeff
,
L.
Mahadevan
, and
K.
Schulten
,
Multiscale Model. Simul.
2
,
527
(
2004
).
12.
M.
Doi
,
J. Comput. Appl. Math.
149
,
13
(
2002
).
13.
D. N.
Theodorou
,
Chem. Eng. Sci.
62
,
5697
(
2007
).
14.
M.
Praprotnik
,
L.
Delle Site
, and
K.
Kremer
,
J. Chem. Phys.
123
,
224106
(
2005
).
15.
M.
Praprotnik
,
S.
Matysiak
,
L.
Delle Site
,
K.
Kremer
, and
C.
Clementi
,
J. Phys.: Condens. Matter
19
,
292201
(
2007
).
16.
N.
Neri
,
C.
Anselmi
,
M.
Cascella
,
A.
Maritan
, and
P.
Carloni
,
Phys. Rev. Lett.
95
,
218102
(
2005
).
17.
T.
Spyriouni
,
C.
Tzoumanekas
,
D.
Theodorou
,
F.
Müller-Plathe
, and
G.
Milano
,
Macromolecules
40
,
3876
(
2007
).
18.
J. W.
Chu
and
G. A.
Voth
,
Biophys. J.
90
,
1572
(
2006
).
19.
S.
Izvekov
and
G. A.
Voth
,
J. Phys. Chem. B
109
,
2469
(
2005
).
20.
J.
Zhou
,
I. F.
Thorpe
,
S.
Izvekov
, and
G. A.
Voth
,
Biophys. J.
92
,
4289
(
2007
).
21.
N.
Basdevant
,
D.
Borgis
, and
T.
Ha-Duong
,
J. Phys. Chem. B
111
,
9390
(
2007
).
22.
D.
Reith
,
M.
Putz
, and
F.
Müller-Plathe
,
J. Comput. Chem.
24
,
1624
(
2003
).
23.
J.
Trylska
,
V.
Tozzini
, and
J. A.
McCammon
,
Biophys. J.
89
,
1455
(
2005
).
24.
K.
Moritsugu
and
J. C.
Smith
,
Biophys. J.
93
,
3460
(
2007
).
25.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
de Vries
,
J. Phys. Chem. B
111
,
7812
(
2007
).
27.
G.
Milano
and
F.
Müller-Plathe
,
J. Phys. Chem. B
109
,
18609
(
2005
).
28.
V. A.
Harmandaris
,
N. P.
Adhikali
,
N. F. A.
van der Vegt
, and
K.
Kremer
,
Macromolecules
39
,
6708
(
2006
).
29.
N.
Zacharopoulos
,
N.
Vergadou
, and
D. N.
Theodorou
,
J. Chem. Phys.
122
,
244111
(
2005
).
30.
A. P.
Heath
,
L. E.
Kavraki
, and
C.
Clementi
,
Proteins
68
,
646
(
2007
).
31.
S.
Kmiecik
and
A.
Kolinski
,
Biophys. J.
94
,
726
(
2008
).
32.
P.
Bradley
,
K. M. S.
Misura
, and
D.
Baker
,
Science
309
,
1868
(
2005
).
33.
Y.
Sugita
,
A.
Kitao
, and
Y.
Okamoto
,
J. Chem. Phys.
113
,
6042
(
2000
).
34.
H.
Fukunishi
,
O.
Watanabe
, and
S.
Takada
,
J. Chem. Phys.
116
,
9058
(
2002
).
35.
W.
Kwak
and
U. H. E.
Hansmann
,
Phys. Rev. Lett.
95
,
138102
(
2005
).
36.
E.
Lyman
,
F. M.
Ytreberg
, and
D. M.
Zuckerman
,
Phys. Rev. Lett.
96
,
028105
(
2006
).
37.
E.
Lyman
,
F. M.
Ytreberg
, and
D. M.
Zuckerman
,
J. Chem. Theory Comput.
2
,
656
(
2006
).
38.
P.
Liu
and
G. A.
Voth
,
J. Chem. Phys.
126
,
045106
(
2007
).
39.
M.
Christen
and
W. F.
van Gunsteren
,
J. Chem. Phys.
124
,
154106
(
2006
).
40.
T. Z.
Lwin
and
R.
Luo
,
J. Chem. Phys.
123
,
194904
(
2005
).
41.
J. W.
Chu
,
S.
Izveko
, and
G. A.
Voth
,
Mol. Simul.
32
,
211
(
2006
).
42.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
63
,
1195
(
1989
).
43.
C.
Zhang
,
S.
Liu
,
H. Y.
Zhou
, and
Y. Q.
Zhou
,
Protein Sci.
13
,
400
(
2004
).
44.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
(
1999
).
45.
R.
Zhou
,
J. Mol. Graphics Modell.
22
,
451
(
2004
).
46.
D. A.
Case
,
T. A.
Darden
,
T. E.
Cheatham
 III
, et al,
AMBER 10
(
University of California
,
San Francisco
,
2008
).
47.
D.
Gront
,
S.
Kmiecik
, and
A.
Kolinski
,
J. Comput. Chem.
28
,
1593
(
2007
).
48.
A. A.
Canutescu
,
A. A.
Shelenkov
, and
R. L.
Dunbrack
,
Protein Sci.
12
,
2001
(
2003
).
You do not currently have access to this content.